Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method


Authors: Elena Celledoni, Brynjulf Owren and Yajuan Sun
Journal: Math. Comp. 83 (2014), 1689-1700
MSC (2010): Primary 65P10, 65L05; Secondary 65L06, 37M99
DOI: https://doi.org/10.1090/S0025-5718-2014-02805-6
Published electronically: January 24, 2014
MathSciNet review: 3194126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: No Runge-Kutta method can be energy preserving for all Hamiltonian systems. But for problems in which the Hamiltonian is a polynomial, the averaged vector field (AVF) method can be interpreted as a Runge-Kutta method whose weights $ b_i$ and abscissae $ c_i$ represent a quadrature rule of degree at least that of the Hamiltonian. We prove that when the number of stages is minimal, the Runge-Kutta scheme must in fact be identical to the AVF scheme.


References [Enhancements On Off] (What's this?)

  • [1] M. P. Calvo and J. M. Sanz-Serna, Canonical B-series, Numer. Math. 67 (1994), no. 2, 161-175. MR 1262779 (95e:65072), https://doi.org/10.1007/s002110050022
  • [2] Elena Celledoni, Robert I. McLachlan, David I. McLaren, Brynjulf Owren, G. Reinout W. Quispel, and William M. Wright, Energy-preserving Runge-Kutta methods, M2AN Math. Model. Numer. Anal. 43 (2009), no. 4, 645-649. MR 2542869 (2010i:65123), https://doi.org/10.1051/m2an/2009020
  • [3] Elena Celledoni, Robert I. McLachlan, Brynjulf Owren, and G. R. W. Quispel, Energy-preserving integrators and the structure of B-series, Found. Comput. Math. 10 (2010), no. 6, 673-693. MR 2728426 (2012d:65311), https://doi.org/10.1007/s10208-010-9073-1
  • [4] E. Celledoni, B. Owren, and Y. Sun, The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method, arXiv:1203.3252.
  • [5] Philippe Chartier, Erwan Faou, and Ander Murua, An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants, Numer. Math. 103 (2006), no. 4, 575-590. MR 2221062 (2007b:37209), https://doi.org/10.1007/s00211-006-0003-8
  • [6] Erwan Faou, Ernst Hairer, and Truong-Linh Pham, Energy conservation with non-symplectic methods: examples and counter-examples, BIT 44 (2004), no. 4, 699-709. MR 2211040 (2006k:37232), https://doi.org/10.1007/s10543-004-5240-6
  • [7] E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math. 5 (2010), no. 1-2, 73-84. MR 2833602
  • [8] Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614 (2006m:65006)
  • [9] E. Hairer and C.J. Zbinden, On conjugate-symplecticity of B-series integrators, IMA Journal of Numerical Analysis, 33 (2013), no. 1, 57-79. MR 3020950
  • [10] F. Iavernaro and D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, J. Numer. Anal. Ind. Appl. Math. 4 (2009), no. 1-2, 87-101. MR 2598786 (2011c:65291)
  • [11] Benedict Leimkuhler and Sebastian Reich, Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics, vol. 14, Cambridge University Press, Cambridge, 2004. MR 2132573 (2006a:37078)
  • [12] A. Murua, Formal series and numerical integrators. I. Systems of ODEs and symplectic integrators, Appl. Numer. Math. 29 (1999), no. 2, 221-251. MR 1666537 (99k:65068), https://doi.org/10.1016/S0168-9274(98)00064-6
  • [13] Matteo Petrera, Andreas Pfadler, and Yuri B. Suris, On integrability of Hirota-Kimura type discretizations, Regul. Chaotic Dyn. 16 (2011), no. 3-4, 245-289. MR 2810980 (2012f:37144), https://doi.org/10.1134/S1560354711030051
  • [14] G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A 41 (2008), no. 4, 045206, 7. MR 2451073 (2009j:65145), https://doi.org/10.1088/1751-8113/41/4/045206
  • [15] Ge Zhong and Jerrold E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A 133 (1988), no. 3, 134-139. MR 967725 (89h:58070), https://doi.org/10.1016/0375-9601(88)90773-6

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65P10, 65L05, 65L06, 37M99

Retrieve articles in all journals with MSC (2010): 65P10, 65L05, 65L06, 37M99


Additional Information

Elena Celledoni
Affiliation: Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
Email: elenac@math.ntnu.no

Brynjulf Owren
Affiliation: Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
Email: bryn@math.ntnu.no

Yajuan Sun
Affiliation: LSEC, Institute of Computational Mathematics, Chinese Academy of Sciences (CAS), P.O. Box 2719, Beijing 100190, China
Email: sunyj@lsec.cc.ac.cn

DOI: https://doi.org/10.1090/S0025-5718-2014-02805-6
Keywords: Energy preservation, Runge--Kutta methods, polynomial Hamiltonian systems
Received by editor(s): November 5, 2012
Published electronically: January 24, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society