Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations

Author: Natalia Kopteva
Journal: Math. Comp. 83 (2014), 2061-2070
MSC (2010): Primary 65N15, 65N30, 65N50; Secondary 65N06
Published electronically: February 28, 2014
MathSciNet review: 3223324
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a counterexample of an anisotropic triangulation on which the exact solution has a second-order error of linear interpolation, while the computed solution obtained using linear finite elements is only first-order pointwise accurate. Our example is given in the context of a singularly perturbed reaction-diffusion equation, whose exact solution exhibits a sharp
boundary layer. Furthermore, we give a theoretical justification of the observed numerical phenomena using a finite-difference representation of the considered finite element methods. Both standard and lumped-mass cases are addressed.

References [Enhancements On Off] (What's this?)

  • [1] V. B. Andreev, The logarithmic factor in the $ L_\infty $-norm error estimate for linear finite elements is sharp, Semin. I. Vekua Inst. Appl. Math. Rep. (Dokl. Semin. Inst. Prikl. Mat. im. I. N. Vekua), 4 (1989), no. 3, 17-20 (in Russian).
  • [2] N. S. Bahvalov, On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 841-859 (Russian). MR 0255066 (40 #8273)
  • [3] H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986), no. 1, 11-37. MR 847015 (87m:65172),
  • [4] Long Chen, Pengtao Sun, and Jinchao Xu, Optimal anisotropic meshes for minimizing interpolation errors in $ L^p$-norm, Math. Comp. 76 (2007), no. 257, 179-204. MR 2261017 (2008e:65385),
  • [5] C. Clavero, J. L. Gracia, and E. O'Riordan, A parameter robust numerical method for a two dimensional reaction-diffusion problem, Math. Comp. 74 (2005), no. 252, 1743-1758. MR 2164094 (2006e:65192),
  • [6] E. F. D'Azevedo, Optimal triangular mesh generation by coordinate transformation, SIAM J. Sci. Statist. Comput. 12 (1991), no. 4, 755-786. MR 1102406 (92a:65041),
  • [7] E. F. D'Azevedo and R. B. Simpson, On optimal interpolation triangle incidences, SIAM J. Sci. Statist. Comput. 10 (1989), no. 6, 1063-1075. MR 1025475 (91a:65019),
  • [8] Vít Dolejší and Jiří Felcman, Anisotropic mesh adaptation for numerical solution of boundary value problems, Numer. Methods Partial Differential Equations 20 (2004), no. 4, 576-608. MR 2060780 (2005g:65182),
  • [9] Natalia Kopteva, Maximum norm error analysis of a 2D singularly perturbed semilinear reaction-diffusion problem, Math. Comp. 76 (2007), no. 258, 631-646 (electronic). MR 2291831 (2008e:65327),
  • [10] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska, Robust numerical methods for singularly perturbed differential equations, 2nd ed., Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 2008. Convection-diffusion-reaction and flow problems. MR 2454024 (2009f:65002)
  • [11] A. A. Samarskiĭ, Teoriya raznostnykh skhem, 3rd ed., ``Nauka'', Moscow, 1989 (Russian, with Russian summary). MR 1196231 (93g:65004)
  • [12] A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $ L_{\infty }$ of the $ \dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1-22. MR 637283 (82m:65106),
  • [13] A. H. Schatz and L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), no. 161, 47-89. MR 679434 (84c:65137),
  • [14] G. I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Ur. O. Ran, Ekaterinburg, 1992 (in Russian).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N15, 65N30, 65N50, 65N06

Retrieve articles in all journals with MSC (2010): 65N15, 65N30, 65N50, 65N06

Additional Information

Natalia Kopteva
Affiliation: Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
Address at time of publication: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XT, United Kingdom

Keywords: Anisotropic triangulation, linear finite elements, maximum norm, singular perturbation, Bakhvalov mesh, Shishkin mesh
Received by editor(s): September 14, 2012
Received by editor(s) in revised form: January 22, 2013
Published electronically: February 28, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society