Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes


Author: Weiming Cao
Journal: Math. Comp. 84 (2015), 89-117
MSC (2010): Primary 65N30, 65N15, 65N50
DOI: https://doi.org/10.1090/S0025-5718-2014-02846-9
Published electronically: May 28, 2014
MathSciNet review: 3266954
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the linear finite element method based on general unstructured anisotropic meshes in two dimensions, we establish the superconvergence in energy norm of the finite element solution to the interpolation of the exact solution for elliptic problems. We also prove the superconvergence of the postprocessing process based on the global $ L^2$-projection of the gradient of the finite element solution. Our basic assumptions are: (i) the mesh is quasi-uniform under a Riemannian metric and (ii) each adjacent element pair forms an approximate (anisotropic) parallelogram. The analysis follows the same methodology developed by Bank and Xu in 2003 for the case of quasi-uniform meshes, and the results can be considered as an extension of their conclusion to the adaptive anisotropic meshes. Numerical examples involving both internal and boundary layers are presented in support of the theoretical analysis.


References [Enhancements On Off] (What's this?)

  • [1] Mark Ainsworth and J. Tinsley Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308 (2003b:65001)
  • [2] Ivo Babuška and Theofanis Strouboulis, The Finite Element Method and its Reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 2001. MR 1857191 (2002k:65001)
  • [3] Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori error estimators. I. Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294-2312 (electronic). MR 2034616 (2004k:65194), https://doi.org/10.1137/S003614290139874X
  • [4] Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori error estimators. II. General unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313-2332 (electronic). MR 2034617 (2004m:65212), https://doi.org/10.1137/S0036142901398751
  • [5] Weiming Cao, On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle, SIAM J. Numer. Anal. 43 (2005), no. 1, 19-40 (electronic). MR 2177954 (2006k:65023), https://doi.org/10.1137/S0036142903433492
  • [6] Weiming Cao, An interpolation error estimate in $ \mathcal {R}^2$ based on the anisotropic measures of higher order derivatives, Math. Comp. 77 (2008), no. 261, 265-286 (electronic). MR 2353953 (2008j:65218), https://doi.org/10.1090/S0025-5718-07-01981-3
  • [7] Weiming Cao, An interpolation error estimate on anisotropic meshes in $ \mathcal {R}^n$ and optimal metrics for mesh refinement, SIAM J. Numer. Anal. 45 (2007), no. 6, 2368-2391 (electronic). MR 2361894 (2008k:65264), https://doi.org/10.1137/060667992
  • [8] Long Chen, Pengtao Sun, and Jinchao Xu, Optimal anisotropic meshes for minimizing interpolation errors in $ L^p$-norm, Math. Comp. 76 (2007), no. 257, 179-204. MR 2261017 (2008e:65385), https://doi.org/10.1090/S0025-5718-06-01896-5
  • [9] P.G.Ciarlet, The Finite Element Methods for Elliptic Problems, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, 2002.
  • [10] L. Formaggia and S. Perotto, New anisotropic a priori error estimates, Numer. Math. 89 (2001), no. 4, 641-667. MR 1865506 (2002j:65110), https://doi.org/10.1007/s002110100273
  • [11] L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems, Numer. Math. 94 (2003), no. 1, 67-92. MR 1971213 (2004c:65127), https://doi.org/10.1007/s00211-002-0415-z
  • [12] Wagdi G. Habashi, Julien Dompierre, Yves Bourgault, Djaffar Ait-Ali-Yahia, Michel Fortin, and Marie-Gabrielle Vallet, Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. I. General principles, Internat. J. Numer. Methods Fluids 32 (2000), no. 6, 725-744. MR 1911901 (2003d:76106), https://doi.org/10.1002/(SICI)1097-0363(20000330)32:6$ \langle $725::AID-FLD935$ \rangle $3.0.CO;2-4
  • [13] F.Hecht, Bidimensional anisotropic mesh generator (User's Manual), INRIA, Rocquencourt, 1997. http://www-rocqq.inria.fr/gamma/cdrom/www/bamg/eng.htm
  • [14] Gerd Kunert and Serge Nicaise, Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, M2AN Math. Model. Numer. Anal. 37 (2003), no. 6, 1013-1043. MR 2026406 (2004k:65196), https://doi.org/10.1051/m2an:2003065
  • [15] A. M. Lakhany, I. Marek, and J. R. Whiteman, Superconvergence results on mildly structured triangulations, Comput. Methods Appl. Mech. Engrg. 189 (2000), no. 1, 1-75. MR 1779678 (2001f:74041), https://doi.org/10.1016/S0045-7825(99)00281-9
  • [16] Jichun Li and Mary F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM J. Numer. Anal. 38 (2000), no. 3, 770-798. MR 1781203 (2001f:65137), https://doi.org/10.1137/S0036142999351212
  • [17] Qun Lin and Jia-Fu Lin, Superconvergence on anisotropic meshes, Int. J. Inf. Syst. Sci. 3 (2007), no. 2, 261-266. MR 2297053 (2008c:65337)
  • [18] Shipeng Mao, Shaochun Chen, and Dongyang Shi, Convergence and superconvergence of a nonconforming finite element on anisotropic meshes, Int. J. Numer. Anal. Model. 4 (2007), no. 1, 16-38. MR 2289730 (2007k:65188)
  • [19] F. Marcuzzi, M. Morandi Cecchi, and M. Venturin, An anisotropic unstructured triangular adaptive mesh algorithm based on error and error gradient information, Math. Comput. Simulation 78 (2008), no. 5-6, 645-652. MR 2435592 (2009e:65197), https://doi.org/10.1016/j.matcom.2008.04.006
  • [20] Stefano Micheletti and Simona Perotto, Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 9-12, 799-835. MR 2195291 (2006i:65179), https://doi.org/10.1016/j.cma.2005.02.009
  • [21] Jean-Marie Mirebeau, Optimal meshes for finite elements of arbitrary order, Constr. Approx. 32 (2010), no. 2, 339-383. MR 2677884 (2011g:65278), https://doi.org/10.1007/s00365-010-9090-y
  • [22] J.-M.Mirebeau, Approximation adaptative et anisotrope par éléements finis: Théorie et Algorithmes, Ph.D. dissertation, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 2010.
  • [23] Ahmed Naga and Zhimin Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal. 42 (2004), no. 4, 1780-1800 (electronic). MR 2114301 (2005k:65231), https://doi.org/10.1137/S0036142903413002
  • [24] M. Picasso, Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator, Comm. Numer. Methods Engrg. 19 (2003), no. 1, 13-23. MR 1952014 (2004c:65131), https://doi.org/10.1002/cnm.546
  • [25] M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM J. Sci. Comput. 24 (2003), no. 4, 1328-1355 (electronic). MR 1976219 (2004e:65124), https://doi.org/10.1137/S1064827501398578
  • [26] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations 8 (1992), no. 2, 97-111. MR 1148797 (92i:65170), https://doi.org/10.1002/num.1690080202
  • [27] Dong-yang Shi, Shi-peng Mao, and Shao-chun Chen, An anisotropic nonconforming finite element with some superconvergence results, J. Comput. Math. 23 (2005), no. 3, 261-274. MR 2133919 (2006h:65194)
  • [28] Lars B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050 (98j:65083)
  • [29] Haijun Wu and Zhimin Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal. 45 (2007), no. 4, 1701-1722. MR 2338406 (2008k:65252), https://doi.org/10.1137/060661430
  • [30] Jinchao Xu and Zhimin Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139-1152 (electronic). MR 2047081 (2005f:65141), https://doi.org/10.1090/S0025-5718-03-01600-4
  • [31] Ningning Yan and Aihui Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32-33, 4289-4299. MR 1832657 (2002c:65189), https://doi.org/10.1016/S0045-7825(00)00319-4
  • [32] Zhimin Zhang, Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 960-971. MR 2402584 (2009c:65327), https://doi.org/10.1002/num.20300
  • [33] Zhimin Zhang, Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals, Int. J. Numer. Anal. Model. 1 (2004), no. 1, 1-24. MR 2052728 (2005b:65119)
  • [34] Zhimin Zhang and Ahmed Naga, A new finite element gradient recovery method: superconvergence property, SIAM J. Sci. Comput. 26 (2005), no. 4, 1192-1213 (electronic). MR 2143481 (2006d:65137), https://doi.org/10.1137/S1064827503402837
  • [35] Q.D.Zhu, Theory on High Accuracy Post-processing in the Finite Element Method, Science Press, Beijing, 2008 (in Chinese).
  • [36] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1331-1364. MR 1161557 (93c:73098), https://doi.org/10.1002/nme.1620330702
  • [37] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1365-1382. MR 1161558 (93c:73099), https://doi.org/10.1002/nme.1620330703

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N15, 65N50

Retrieve articles in all journals with MSC (2010): 65N30, 65N15, 65N50


Additional Information

Weiming Cao
Affiliation: Department of Mathematics, University of Texas at San Antonio, San Antonio, Texas 78249
Email: weiming.cao@utsa.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02846-9
Keywords: Superconvergence, anisotropic mesh, recovery type error estimates, post processing, linear finite element
Received by editor(s): June 30, 2012
Received by editor(s) in revised form: April 29, 2013
Published electronically: May 28, 2014
Additional Notes: This work was supported in part by NSF grant DMS-0811232.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society