Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Divisibility of reduction in groups of rational numbers


Author: Francesco Pappalardi
Journal: Math. Comp. 84 (2015), 385-407
MSC (2010): Primary 11N37; Secondary 11N56
DOI: https://doi.org/10.1090/S0025-5718-2014-02872-X
Published electronically: June 27, 2014
MathSciNet review: 3266967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a multiplicative group of nonzero rational numbers and a positive integer $ m$, we consider the problem of determining the density of the set of primes $ p$ for which the order of the reduction modulo $ p$ of the group is divisible by $ m$. In the case when the group is finitely generated the density is explicitly computed. Some examples of groups with infinite rank are considered.


References [Enhancements On Off] (What's this?)

  • [1] Leonardo Cangelmi and Francesco Pappalardi, On the $ r$-rank Artin conjecture. II, J. Number Theory 75 (1999), no. 1, 120-132. MR 1677559 (2000i:11149), https://doi.org/10.1006/jnth.1998.2319
  • [2] Koji Chinen and Leo Murata, On a distribution property of the residual order of $ a\pmod p$. IV, Number theory, Dev. Math., vol. 15, Springer, New York, 2006, pp. 11-22. MR 2213825 (2008a:11120), https://doi.org/10.1007/0-387-30829-6_2
  • [3] Rajiv Gupta and M. Ram Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), no. 1, 127-130. MR 762358 (86d:11003), https://doi.org/10.1007/BF01388719
  • [4] Rajiv Gupta and M. Ram Murty, Primitive points on elliptic curves, Compositio Math. 58 (1986), no. 1, 13-44. MR 834046 (87h:11050)
  • [5] Helmut Hasse, Über die Dichte der Primzahlen $ p$, für die eine vorgegebene ganzrationale Zahl $ a\not =0$ von gerader bzw.ungerader Ordnung mod. $ p$ist, Math. Ann. 166 (1966), 19-23 (German). MR 0205975 (34 #5800)
  • [6] D. R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 145, 27-38. MR 830627 (88a:11004), https://doi.org/10.1093/qmath/37.1.27
  • [7] Christopher Hooley, On binary cubic forms, J. Reine Angew. Math. 226 (1967), 30-87. MR 0213299 (35 #4163)
  • [8] P. Kurlberg and C. Pomerance, On a problem of Arnold: the average multiplicative order of a given integer, Algebra and Number Theory, 7 (2013), no. 4, 981-999. MR 3095233
  • [9] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $ L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409-464. MR 0447191 (56 #5506)
  • [10] Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234 (33 #5416)
  • [11] Pieter Moree, Artin's primitive root conjecture--a survey, Integers 12 (2012), no. 6, 1305-1416. MR 3011564, https://doi.org/10.1515/integers-2012-0043
  • [12] Pieter Moree, On primes $ p$ for which $ d$ divides $ {\rm ord}_p(g)$, Funct. Approx. Comment. Math. 33 (2005), 85-95. MR 2274151 (2007j:11131)
  • [13] Pieter Moree, On the distribution of the order over residue classes, Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 121-128 (electronic). MR 2263073 (2007e:11117), https://doi.org/10.1090/S1079-6762-06-00168-5
  • [14] F. Pappalardi, On Hooley's theorem with weights, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), no. 4, 375-388. Number theory, II (Rome, 1995). MR 1452393 (98c:11102)
  • [15] Francesco Pappalardi, On the $ r$-rank Artin conjecture, Math. Comp. 66 (1997), no. 218, 853-868. MR 1377664 (97f:11082), https://doi.org/10.1090/S0025-5718-97-00805-3
  • [16] Francesco Pappalardi, Square free values of the order function, New York J. Math. 9 (2003), 331-344. MR 2028173 (2004i:11116)
  • [17] F. Pappalardi and A. Susa, An analogue of Artin's Conjecture for multiplicative subgroups, Arch. Math. 101 (2013), no. 4, 319-330. MR 3116653
  • [18] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401 (French). MR 644559 (83k:12011)
  • [19] Edwin Weiss, Algebraic Number Theory, McGraw-Hill Book Co., Inc., New York, 1963. MR 0159805 (28 #3021)
  • [20] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith. 43 (1984), no. 2, 177-190. MR 736730 (86e:11081)
  • [21] PARI/GP, version 2.3.4, http://pari.math.u-bordeaux.fr/, Bordeaux, 2009.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11N37, 11N56

Retrieve articles in all journals with MSC (2010): 11N37, 11N56


Additional Information

Francesco Pappalardi
Affiliation: Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. L. Murialdo 1, I–00146, Roma, Italy
Email: pappa@mat.uniroma3.it

DOI: https://doi.org/10.1090/S0025-5718-2014-02872-X
Received by editor(s): October 30, 2012
Received by editor(s) in revised form: May 25, 2013
Published electronically: June 27, 2014
Additional Notes: This project was supported in part by G.N.S.A.G.A of I.N.D.A.M.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society