Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Directional Chebyshev-type methods for solving equations


Authors: I. K. Argyros, M. A. Hernández, S. Hilout and N. Romero
Journal: Math. Comp. 84 (2015), 815-830
MSC (2010): Primary 65H05, 65H10, 49M15
DOI: https://doi.org/10.1090/S0025-5718-2014-02906-2
Published electronically: September 23, 2014
MathSciNet review: 3290965
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A semi-local convergence analysis for directional Chebyshev-type methods in $ m$-variables is presented in this study. Our convergence analysis uses recurrent relations and Newton-Kantorovich-type hypotheses. Numerical examples are also provided to show the effectiveness of the proposed method.


References [Enhancements On Off] (What's this?)

  • [1] Heng-Bin An and Zhong-Zhi Bai, Directional secant method for nonlinear equations, J. Comput. Appl. Math. 175 (2005), no. 2, 291-304. MR 2108576 (2005j:65046), https://doi.org/10.1016/j.cam.2004.05.013
  • [2] Ioannis K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), no. 2, 315-332. MR 2072881 (2005c:65047), https://doi.org/10.1016/j.cam.2004.01.029
  • [3] Ioannis K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. MR 2086964, https://doi.org/10.1016/j.jmaa.2004.04.008
  • [4] Ioannis K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008. MR 2428779 (2010c:47001)
  • [5] Ioannis K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. 80 (2011), no. 273, 327-343. MR 2728982 (2012a:65128), https://doi.org/10.1090/S0025-5718-2010-02398-1
  • [6] Ioannis K. Argyros, Yeol Je Cho, and Saïd Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Boca Raton, FL, 2012. MR 2964315
  • [7] I. K. Argyros, J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and S. Hilout, On the semilocal convergence of efficient Chebyshev-secant-type methods, J. Comput. Appl. Math. 235 (2011), no. 10, 3195-3206. MR 2773304 (2012b:65072), https://doi.org/10.1016/j.cam.2011.01.005
  • [8] A. Ben-Israel, Y. Levin, Maple programs for directional Newton methods, are avaialable at ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws.
  • [9] J. A. Ezquerro and M. A. Hernández, An optimization of Chebyshev's method, J. Complexity 25 (2009), no. 4, 343-361. MR 2542035 (2010g:65065), https://doi.org/10.1016/j.jco.2009.04.001
  • [10] Yuri Levin and Adi Ben-Israel, Directional Newton methods in $ n$ variables, Math. Comp. 71 (2002), no. 237, 251-262. MR 1862998 (2002h:65083), https://doi.org/10.1090/S0025-5718-01-01332-1
  • [11] Gábor Lukács, The generalized inverse matrix and the surface-surface intersection problem, Theory and practice of geometric modeling (Blaubeuren, 1988) Springer, Berlin, 1989, pp. 167-185. MR 1042329 (91f:65041)
  • [12] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. MR 0273810 (42 #8686)
  • [13] Boris T. Polyak, Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software Inc. Publications Division, New York, 1987. Translated from the Russian; With a foreword by Dimitri P. Bertsekas. MR 1099605 (92b:49001)
  • [14] F.-A. Potra, On the convergence of a class of Newton-like methods, Iterative solution of nonlinear systems of equations (Oberwolfach, 1982), Lecture Notes in Math., vol. 953, Springer, Berlin, 1982, pp. 125-137. MR 678615 (84e:65057)
  • [15] Florian Alexandru Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84. MR 816258 (87f:65073)
  • [16] Homer F. Walker and Layne T. Watson, Least-change secant update methods for underdetermined systems, SIAM J. Numer. Anal. 27 (1990), no. 5, 1227-1262. MR 1061128 (91g:65121), https://doi.org/10.1137/0727071
  • [17] S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. MR 1791767 (2001g:65064), https://doi.org/10.1016/S0893-9659(00)00100-2

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65H05, 65H10, 49M15

Retrieve articles in all journals with MSC (2010): 65H05, 65H10, 49M15


Additional Information

I. K. Argyros
Affiliation: Department of Mathematics and Sciences, Cameron University, Lawton, Oklahoma 73505
Email: iargyros@cameron.edu

M. A. Hernández
Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
Email: mahernan@unirioja.es

S. Hilout
Affiliation: Laboratoire de Mathématiques et Applications and Département des Sciencesde la Terre et de l’Atmosphère Poitiers University, C.P. 8888 – Succursale Centreville Montréal, Québec, Canada
Email: said.hilout@math.univ-poitiers.fr

N. Romero
Affiliation: Department of Mathematics and Computation, University of La Rioja, 26004 Logroño, Spain
Email: natalia.romero@unirioja.es

DOI: https://doi.org/10.1090/S0025-5718-2014-02906-2
Keywords: Directional Chebyshev-type method, directional Newton--Secant method, nonlinear equations, Newton--Kantorovich hypotheses, recurrence relations, Hilbert space
Received by editor(s): September 6, 2011
Received by editor(s) in revised form: July 17, 2013
Published electronically: September 23, 2014
Additional Notes: The research of the second, third and fourth authors was supported in part by the project MTM2008-01952/MTM of the Spanish Ministry of Science and Innovation and the project Colabora 2009/04 of the Riojan Autonomous Community.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society