Computing the singularities of rational surfaces
Authors:
S. Pérez-Díaz, J. R. Sendra and C. Villarino
Journal:
Math. Comp. 84 (2015), 1991-2021
MSC (2010):
Primary 14Q10; Secondary 14J17, 68W30
DOI:
https://doi.org/10.1090/S0025-5718-2014-02907-4
Published electronically:
October 9, 2014
MathSciNet review:
3335901
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Given a rational projective parametrization of a rational projective surface
we present an algorithm such that, with the exception of a finite set (maybe empty)
of projective base points of
, decomposes the projective parameter plane as
such that, if
, then
is a point of
of multiplicity
.
- [1] Falai Chen, Wenping Wang, and Yang Liu, Computing singular points of plane rational curves, J. Symbolic Comput. 43 (2008), no. 2, 92-117. MR 2357078 (2009a:14035), https://doi.org/10.1016/j.jsc.2007.10.003
- [2] Joe Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. Corrected reprint of the 1992 original. MR 1416564 (97e:14001)
- [3] Xiaohong Jia, Falai Chen, and Jiansong Deng, Computing self-intersection curves of rational ruled surfaces, Comput. Aided Geom. Design 26 (2009), no. 3, 287-299. MR 2493078 (2010a:65032), https://doi.org/10.1016/j.cagd.2008.09.005
- [4] Hyungju Park, Effective computation of singularities of parametric affine curves, J. Pure Appl. Algebra 173 (2002), no. 1, 49-58. MR 1912959 (2003f:14068), https://doi.org/10.1016/S0022-4049(02)00017-8
- [5] Sonia Pérez-Díaz, Computation of the singularities of parametric plane curves, J. Symbolic Comput. 42 (2007), no. 8, 835-857. MR 2345839 (2008g:14116), https://doi.org/10.1016/j.jsc.2007.06.001
- [6] Sonia Pérez-Díaz and J. Rafael Sendra, Computation of the degree of rational surface parametrizations, J. Pure Appl. Algebra 193 (2004), no. 1-3, 99-121. MR 2076380 (2005d:14090), https://doi.org/10.1016/j.jpaa.2004.02.011
- [7] Sonia Pérez-Díaz and J. Rafael Sendra, Partial degree formulae for rational algebraic surfaces, ISSAC'05, ACM, New York, 2005, pp. 301-308. MR 2280561, https://doi.org/10.1145/1073884.1073926
- [8] Sonia Pérez-Díaz and J. Rafael Sendra, A univariate resultant-based implicitization algorithm for surfaces, J. Symbolic Comput. 43 (2008), no. 2, 118-139. MR 2357079 (2009b:14112), https://doi.org/10.1016/j.jsc.2007.10.001
- [9] S. Pérez-Díaz, J. R. Sendra, and C. Villarino, A first approach towards normal parametrizations of algebraic surfaces, Internat. J. Algebra Comput. 20 (2010), no. 8, 977-990. MR 2747411 (2011m:68303), https://doi.org/10.1142/S0218196710005972
- [10] R. Rubio, J. M Serradilla, and M. P. Vélez, Detecting real singularities of a space curve from a real rational parametrization, J. Symbolic Comput. 44 (2009), no. 5, 490-498. MR 2499924 (2010h:14095), https://doi.org/10.1016/j.jsc.2007.09.002
- [11] J. Rafael Sendra and Franz Winkler, Tracing index of rational curve parametrizations, Comput. Aided Geom. Design 18 (2001), no. 8, 771-795. MR 1857997 (2002h:65022), https://doi.org/10.1016/S0167-8396(01)00069-3
- [12] J. Rafael Sendra, Franz Winkler, and Sonia Pérez-Díaz, Rational Algebraic Curves, Algorithms and Computation in Mathematics, vol. 22, Springer, Berlin, 2008. A computer algebra approach. MR 2361646 (2009a:14073)
- [13] Igor R. Shafarevich, Basic Algebraic Geometry. 1. Varieties in Projective Space, 2nd ed., Springer-Verlag, Berlin, 1994. Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833 (95m:14001)
- [14] F. Winkler, Polynomial Algorithms in Computer Algebra, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1996. MR 1408683 (97j:68063)
- [15] O. Zariski, P. Samuel, Commutative Algebra, Volume I. Graduate Texts in Mathematics, vol. 28, Springer-Verlag, 1975.
Retrieve articles in Mathematics of Computation with MSC (2010): 14Q10, 14J17, 68W30
Retrieve articles in all journals with MSC (2010): 14Q10, 14J17, 68W30
Additional Information
S. Pérez-Díaz
Affiliation:
Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain
Email:
sonia.perez@uah.es
J. R. Sendra
Affiliation:
Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain
Email:
rafael.sendra@uah.es
C. Villarino
Affiliation:
Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Madrid, Spain
Email:
carlos.villarino@uah.es
DOI:
https://doi.org/10.1090/S0025-5718-2014-02907-4
Received by editor(s):
December 25, 2011
Received by editor(s) in revised form:
January 23, 2013, June 5, 2013, and October 27, 2013
Published electronically:
October 9, 2014
Additional Notes:
This work was partially supported by the Spanish Ministerio de Ciencia e Innovación under the project MTM2008-04699-C03-01 and by the Ministerio de Economía y Competitividad under the project MTM2011-25816-C02-01; the authors are members of the Research Group ASYNACS (Ref. CCEE2011/R34).
Article copyright:
© Copyright 2014
American Mathematical Society