Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the absolute Mahler measure of polynomials having all zeros in a sector. III


Authors: V. Flammang and G. Rhin
Journal: Math. Comp. 84 (2015), 2927-2938
MSC (2010): Primary 11R04, 12D10
DOI: https://doi.org/10.1090/mcom/2959
Published electronically: April 22, 2015
MathSciNet review: 3378854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \alpha $ be an algebraic integer of degree $ d$, not 0 or a root of unity, all of whose conjugates $ \alpha _i$ lie in a sector $ \vert \arg z \vert \leq \theta $. In 1995, G. Rhin and C. Smyth computed the greatest lower bound $ c(\theta )$ of the absolute Mahler measure ( $ \prod _{i=1}^d \max (1, \vert \alpha _i \vert))^{1/d}$ of $ \alpha $, for $ \theta $ belonging to nine subintervals of $ [0, 2 \pi /3]$. More recently, in 2004, G. Rhin and Q. Wu improved the result to thirteen subintervals of $ [0, \pi ]$ and extended some existing subintervals. In this paper, for the first time we find a complete subinterval where $ c(\theta )$ is known exactly, as well as a fourteenth subinterval. Moreover, we slightly extend further all the existing subintervals.


References [Enhancements On Off] (What's this?)

  • [A] Francesco Amoroso, $ f$-transfinite diameter and number-theoretic applications, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 1179-1198 (English, with English and French summaries). MR 1252941 (95d:11091)
  • [B1] David W. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull. 21 (1978), no. 2, 129-133. MR 0485771 (58 #5580)
  • [B2] David W. Boyd, Speculations concerning the range of Mahler's measure, Canad. Math. Bull. 24 (1981), no. 4, 453-469. MR 644535 (83h:12002), https://doi.org/10.4153/CMB-1981-069-5
  • [F] V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter, Math. Comp. 78 (2009), no. 266, 1119-1125. MR 2476574 (2009m:11173), https://doi.org/10.1090/S0025-5718-08-02120-0
  • [J] J. L. W. V. Jensen, Sur un nouvel et important théorème de la théorie des fonctions, Acta Math. 22 (1899), no. 1, 359-364 (French). MR 1554908, https://doi.org/10.1007/BF02417878
  • [La] Michel Langevin, Méthode de Fekete-Szegő et problème de Lehmer, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 463-466 (French, with English summary). MR 812558 (86m:11050)
  • [L] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461-479. MR 1503118, https://doi.org/10.2307/1968172
  • [Ma] K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341-344. MR 0138593 (25 #2036)
  • [RS] Georges Rhin and Christopher Smyth, On the absolute Mahler measure of polynomials having all zeros in a sector, Math. Comp. 64 (1995), no. 209, 295-304. MR 1257579 (95c:11123), https://doi.org/10.2307/2153335
  • [RW] Georges Rhin and Qiang Wu, On the absolute Mahler measure of polynomials having all zeros in a sector. II, Math. Comp. 74 (2005), no. 249, 383-388 (electronic). MR 2085898 (2005e:11134), https://doi.org/10.1090/S0025-5718-04-01676-X
  • [Sm] C. J. Smyth, On the measure of totally real algebraic integers. II, Math. Comp. 37 (1981), no. 155, 205-208. MR 616373 (82j:12002b), https://doi.org/10.2307/2007513
  • [Wu] Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901-911 (electronic). MR 1954974 (2003m:11111), https://doi.org/10.1090/S0025-5718-02-01442-4

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R04, 12D10

Retrieve articles in all journals with MSC (2010): 11R04, 12D10


Additional Information

V. Flammang
Affiliation: UMR CNRS 7502. IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ cedex 01, France
Email: valerie.flammang@univ-lorraine.fr

G. Rhin
Affiliation: UMR CNRS 7502. IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ cedex 01, France
Email: georges.rhin@univ-lorraine.fr

DOI: https://doi.org/10.1090/mcom/2959
Received by editor(s): January 2, 2014
Received by editor(s) in revised form: March 24, 2014
Published electronically: April 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society