Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An explicit density estimate for Dirichlet $ L$-series


Author: O. Ramaré
Journal: Math. Comp. 85 (2016), 325-356
MSC (2010): Primary 11P05, 11Y50; Secondary 11B13
DOI: https://doi.org/10.1090/mcom/2991
Published electronically: June 3, 2015
MathSciNet review: 3404452
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, for $ T\ge 2\,000$, $ T\ge Q\ge 10$, and $ \sigma \ge 0.52$, we have

$\displaystyle \sum _{q\le Q}\mkern -2mu \frac {q}{\varphi (q)}\mkern -6mu \sum ... ...,Q^{5}T^3\bigr )^{1-\sigma }\log ^{5-2\sigma }(Q^2T) \!+\!32\,Q^2\log ^2(Q^2T),$    

where $ \chi \operatorname {mod}^* q$ denotes a sum over all primitive Dirichlet characters $ \chi $ to the modulus $ q$. Furthermore, we have

$\displaystyle N(\sigma ,T,\bbone )\le 2T \log \biggl (1+\frac {9.8}{2T}(3T)^{8(1-\sigma )/{3}}\log ^{5-2\sigma }(T)\biggr ) \!+\!103(\log T)^2.$    


References [Enhancements On Off] (What's this?)

  • [1] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29 #4914)
  • [2] Roland Bacher, Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial coefficients and the algebra of recurrence matrices, Internat. J. Algebra Comput. 18 (2008), no. 3, 535-566. MR 2422072 (2009c:15006), https://doi.org/10.1142/S021819670800455X
  • [3] R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series, Studia Math. 175 (2006), no. 3, 285-304. MR 2261747 (2007k:30005), https://doi.org/10.4064/sm175-3-7
  • [4] P. Barrucand and F. Laubie, Sur les symboles des restes quadratiques des discriminants, Acta Arith. 48 (1987), no. 1, 81-88 (French). MR 893464 (88h:11080)
  • [5] G. Bastien and M. Rogalski, Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, Canad. J. Math. 54 (2002), no. 5, 916-944 (French, with English and French summaries). MR 1924708 (2003i:11121), https://doi.org/10.4153/CJM-2002-034-7
  • [6] Frédéric Bayart, Catherine Finet, Daniel Li, and Hervé Queffélec, Composition operators on the Wiener-Dirichlet algebra, J. Operator Theory 60 (2008), no. 1, 45-70. MR 2415556 (2009g:47059)
  • [7] Michael A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation $ \vert ax^n-by^n\vert =1$, J. Reine Angew. Math. 535 (2001), 1-49. MR 1837094 (2002d:11079), https://doi.org/10.1515/crll.2001.044
  • [8] H. Bohr and E. Landau, Sur les zéros de la fonction $ \zeta (s)$ de Riemann., C. R. 158 (1914), 106-110 (French).
  • [9] Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1987), 103 (French, with English summary). MR 891718 (88g:11064)
  • [10] Jing Run Chen, On zeros of Dirichlet's $ L$ functions, Sci. Sinica Ser. A 29 (1986), no. 9, 897-913. MR 869195 (88a:11079)
  • [11] Yuanyou F. Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), no. 4, 1261-1280. MR 2095256 (2005f:11179), https://doi.org/10.1216/rmjm/1181069799
  • [12] Henri Cohen and François Dress, Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré, Colloque de Théorie Analytique des Nombres ``Jean Coquet'' (Marseille, 1985) Publ. Math. Orsay, vol. 88, Univ. Paris XI, Orsay, 1988, pp. 73-76 (French). MR 952866 (89i:11103)
  • [13] J. B. Conrey, At least two-fifths of the zeros of the Riemann zeta function are on the critical line, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 79-81. MR 959210 (89k:11077), https://doi.org/10.1090/S0273-0979-1989-15704-2
  • [14] J.-M. Deshouillers and H. Iwaniec, Power mean-values for Dirichlet's polynomials and the Riemann zeta-function. II, Acta Arith. 43 (1984), no. 3, 305-312. MR 738142 (85g:11076)
  • [15] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. thesis, Limoges, http://www.unilim.fr/laco/theses/1998/T1998_01.pdf, 1998, 173 pp.
  • [16] Pierre Dusart, Inégalités explicites pour $ \psi (X)$, $ \theta (X)$, $ \pi (X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59 (French, with English and French summaries). MR 1697455 (2000f:11125)
  • [17] P. Dusart, Estimates of some functions over primes without R. H., http://arxiv.org/abs/1002.0442 (2010).
  • [18] Pierre Dusart, Inégalités explicites pour $ \psi (X)$, $ \theta (X)$, $ \pi (X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59 (French, with English and French summaries). MR 1697455 (2000f:11125)
  • [19] Sumaia Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), no. 3, 1027-1044. MR 2997785, https://doi.org/10.1016/j.jnt.2012.09.001
  • [20] L. Faber and H. Kadiri, New bounds for $ \psi (x)$, preprint (2013), 15pp.
  • [21] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software 33 (2007), no. 2, Art. 13, 15. MR 2326955 (2008e:65157), https://doi.org/10.1145/1236463.1236468
  • [22] P. X. Gallagher, A large sieve density estimate near $ \sigma =1$, Invent. Math. 11 (1970), 329-339. MR 0279049 (43 #4775)
  • [23] X. Gourdon, The $ 10^{13}$ first zeros of the Riemann Zeta Function and zeros computations at very large height, http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (2004).
  • [24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, Inc., San Diego, CA, 2000. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. MR 1773820 (2001c:00002)
  • [25] Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), no. 1, 73-107. MR 1401709 (97m:11023), https://doi.org/10.1112/S0025579300011608
  • [26] G. H. Hardy, A. E. Ingham, and G. Pólya, Theorems concerning mean values of analytic functions, Proceedings Royal Soc. London (A) 113 (1927), 542-569 (English).
  • [27] H. A. Helfgott, Minor arcs for Goldbach's problem, Submitted (2012), arXiv:1205.5252.
  • [28] H. A. Helfgott, Major arcs for Goldbach's theorem, Submitted (2013), arXiv:1305.2897.
  • [29] Henryk Iwaniec and Emmanuel Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [30] Habiba Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185-200. MR 3105334, https://doi.org/10.4064/aa160-2-6
  • [31] Manfred Kolster and Thong Nguyen Quang Do, Syntomic regulators and special values of $ p$-adic $ L$-functions, Invent. Math. 133 (1998), no. 2, 417-447. MR 1632798 (99f:11151), https://doi.org/10.1007/s002220050250
  • [32] J. E. Littlewood, On the zeros of the Riemann Zeta-function, Cambr. Phil. Soc. Proc. 22 (1924), 295-318 (English).
  • [33] Ming-Chit Liu and Tianze Wang, Distribution of zeros of Dirichlet $ L$-functions and an explicit formula for $ \psi (t,\chi )$, Acta Arith. 102 (2002), no. 3, 261-293. MR 1884719 (2003f:11125), https://doi.org/10.4064/aa102-3-5
  • [34] Ming-Chit Liu and Tianze Wang, On the Vinogradov bound in the three primes Goldbach conjecture, Acta Arith. 105 (2002), no. 2, 133-175. MR 1932763 (2003i:11147), https://doi.org/10.4064/aa105-2-3
  • [35] Kevin S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265-285. MR 726004 (85e:11065), https://doi.org/10.2307/2007579
  • [36] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82. MR 0337775 (49 #2544)
  • [37] Sadegh Nazardonyavi and Semyon Yakubovich, Another proof of Spira's inequality and its application to the Riemann hypothesis, J. Math. Inequal. 7 (2013), no. 2, 167-174. MR 3099609, https://doi.org/10.7153/jmi-07-16
  • [38] The PARI Group, Bordeaux, PARI/GP, version 2.5.2, 2011, http://pari.math.u-bordeaux.fr/.
  • [39] D. J. Platt, Computing degree 1 L-function rigorously, Ph.D. thesis, Mathematics, 2011, arXiv:1305.3087.
  • [40] E. Preissmann, Sur une inégalité de Montgomery-Vaughan, Enseign. Math. (2) 30 (1984), no. 1-2, 95-113 (French). MR 743672 (85e:11067)
  • [41] Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z 72 (1959/1960), 192-204. MR 0117200 (22 #7982)
  • [42] Olivier Ramaré, On Šnirelman's constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 4, 645-706. MR 1375315 (97a:11167)
  • [43] Olivier Ramaré, Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions, Acta Arith. 165 (2014), no. 1, 1-10. MR 3263938, https://doi.org/10.4064/aa165-1-1
  • [44] G. Ricotta, Real zeros and size of Rankin-Selberg $ L$-functions in the level aspect, Duke Math. J. 131 (2006), no. 2, 291-350. MR 2219243 (2007j:11120), https://doi.org/10.1215/S0012-7094-06-13124-1
  • [45] Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415-440, S17-S23. MR 1195435 (94b:11085), https://doi.org/10.2307/2152965
  • [46] Lowell Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1968/1969), 221-233. MR 0241376 (39 #2716)
  • [47] Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337-360. MR 0457374 (56 #15581b)
  • [48] Robert Spira, Calculation of Dirichlet $ L$-functions, Math. Comp. 23 (1969), 489-497. MR 0247742 (40 #1004a)
  • [49] W.A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2013, http://www.sagemath.org.
  • [50] Terence Tao, Every odd number greater than $ 1$ is the sum of at most five primes, Math. Comp. 83 (2014), no. 286, 997-1038. MR 3143702, https://doi.org/10.1090/S0025-5718-2013-02733-0
  • [51] E. C. Titchmarsh, The Theory of Riemann Zeta Function, Oxford Univ. Press, Oxford 1951, 1951.
  • [52] Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280-292. MR 3111568, https://doi.org/10.1016/j.jnt.2013.07.017
  • [53] S. Wedeniwski, On the Riemann hypothesis, http://www.zetagrid.net (2009).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11P05, 11Y50, 11B13

Retrieve articles in all journals with MSC (2010): 11P05, 11Y50, 11B13


Additional Information

O. Ramaré
Affiliation: Laboratoire Paul Painlevé / CNRS, Université Lille 1, 59655 Villeneuve d’Ascq, France
Email: ramare@math.univ-lille1.fr

DOI: https://doi.org/10.1090/mcom/2991
Received by editor(s): September 5, 2013
Received by editor(s) in revised form: June 13, 2013, and July 5, 2014
Published electronically: June 3, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society