Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Formulas for central values of twisted spin $ L$-functions attached to paramodular forms


Authors: Nathan C. Ryan and Gonzalo Tornaría; with an appendix by Ralf Schmidt
Journal: Math. Comp. 85 (2016), 907-929
MSC (2010): Primary 11F46
DOI: https://doi.org/10.1090/mcom/2988
Published electronically: June 23, 2015
MathSciNet review: 3434888
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [AS01] Mahdi Asgari and Ralf Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), no. 2, 173-200. MR 1821182 (2002a:11044), https://doi.org/10.1007/PL00005869
  • [BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [BK10] Armand Brumer and Kenneth Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463-2516. MR 3165645, https://doi.org/10.1090/S0002-9947-2013-05909-0
  • [Böc86] S. Böcherer,
    Bemerkungen über die Dirichletreihen von Koecher und Maaß. (Remarks on the Dirichlet series of Koecher and Maaß).
    Technical report, Math. Gottingensis, Schriftenr. Sonderforschungsbereichs Geom. Anal. 68, 36 S., 1986.
  • [Bor79] A. Borel,
    Automorphic $ L$-functions,
    Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 27-61. Amer. Math. Soc., Providence, R.I., 1979.
  • [BSP92] Siegfried Böcherer and Rainer Schulze-Pillot, The Dirichlet series of Koecher and Maass and modular forms of weight $ \frac 32$, Math. Z. 209 (1992), no. 2, 273-287. MR 1147818 (93b:11053), https://doi.org/10.1007/BF02570834
  • [Dok04] Tim Dokchitser, Computing special values of motivic $ L$-functions, Experiment. Math. 13 (2004), no. 2, 137-149. MR 2068888 (2005f:11128)
  • [EZ85] Martin Eichler and Don Zagier, The Theory of Jacobi Forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735 (86j:11043)
  • [FM11] Masaaki Furusawa and Kimball Martin, On central critical values of the degree four $ L$-functions for $ {\rm GSp}(4)$: the fundamental lemma, II, Amer. J. Math. 133 (2011), no. 1, 197-233. MR 2752939 (2012d:11117), https://doi.org/10.1353/ajm.2011.0007
  • [FS99] Masaaki Furusawa and Joseph A. Shalika, The fundamental lemma for the Bessel and Novodvorsky subgroups of $ {\rm GSp}(4)$, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 2, 105-110 (English, with English and French summaries). MR 1669031 (99k:11075), https://doi.org/10.1016/S0764-4442(99)80146-3
  • [FS00] Masaaki Furusawa and Joseph A. Shalika, The fundamental lemma for the Bessel and Novodvorsky subgroups of $ {\rm GSp}(4)$. II, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 8, 593-598 (English, with English and French summaries). MR 1799095 (2001k:11088), https://doi.org/10.1016/S0764-4442(00)01683-9
  • [FS03] Masaaki Furusawa and Joseph A. Shalika, On central critical values of the degree four $ L$-functions for GSp(4): the fundamental lemma, Mem. Amer. Math. Soc. 164 (2003), no. 782, x+139. MR 1983033 (2004h:11046), https://doi.org/10.1090/memo/0782
  • [Fur93] Masaaki Furusawa, On $ L$-functions for $ {\rm GSp}(4)\times {\rm GL}(2)$ and their special values, J. Reine Angew. Math. 438 (1993), 187-218. MR 1215654 (94e:11057), https://doi.org/10.1515/crll.1993.438.187
  • [GKZ87] B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $ L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497-562. MR 909238 (89i:11069), https://doi.org/10.1007/BF01458081
  • [Gri95] Valeri Gritsenko, Arithmetical lifting and its applications, Number theory (Paris, 1992-1993) London Math. Soc. Lecture Note Ser., vol. 215, Cambridge Univ. Press, Cambridge, 1995, pp. 103-126. MR 1345176 (96d:11049), https://doi.org/10.1017/CBO9780511661990.008
  • [GT11] Wee Teck Gan and Shuichiro Takeda, The local Langlands conjecture for $ {\rm GSp}(4)$, Ann. of Math. (2) 173 (2011), no. 3, 1841-1882. MR 2800725 (2012c:22019), https://doi.org/10.4007/annals.2011.173.3.12
  • [HTW10] William B. Hart, Gonzalo Tornaría, and Mark Watkins, Congruent number theta coefficients to $ 10^{12}$, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 186-200. MR 2721421 (2011m:11063), https://doi.org/10.1007/978-3-642-14518-6_17
  • [KK02] Winfried Kohnen and Michael Kuss, Some numerical computations concerning spinor zeta functions in genus 2 at the central point, Math. Comp. 71 (2002), no. 240, 1597-1607. MR 1933046 (2003i:11057), https://doi.org/10.1090/S0025-5718-01-01399-0
  • [Koh85] Winfried Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237-268. MR 783554 (86i:11018), https://doi.org/10.1007/BF01455989
  • [PY14a] Cris Poor and David S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401-1438. MR 3315514, https://doi.org/10.1090/S0025-5718-2014-02870-6
  • [PY14b] Cris Poor and David Yuen,
    The paramodular forms website,
    http://math.lfc.edu/~yuen/paramodular, 2014.
  • [Rau10] Martin Raum, Efficiently generated spaces of classical Siegel modular forms and the Böcherer conjecture, J. Aust. Math. Soc. 89 (2010), no. 3, 393-405. MR 2785912 (2012d:11111), https://doi.org/10.1017/S1446788711001121
  • [RS06] Brooks Roberts and Ralf Schmidt, On modular forms for the paramodular groups, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 334-364. MR 2208781 (2006m:11065), https://doi.org/10.1142/9789812774415_0015
  • [RS07] Brooks Roberts and Ralf Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics, vol. 1918, Springer, Berlin, 2007. MR 2344630 (2008g:11080)
  • [RT11] Nathan C. Ryan and Gonzalo Tornaría, A Böcherer-type conjecture for paramodular forms, Int. J. Number Theory 7 (2011), no. 5, 1395-1411. MR 2825979 (2012j:11109), https://doi.org/10.1142/S1793042111004629
  • [RT13] N. C. Ryan and G. Tornaría,
    Central values of paramodular form L-functions,
    http://www.ma.utexas.edu/users/tornaria/cnt/paramodular, 2013.
  • [Rub08] M. O. Rubinstein,
    lcalc: The L-function calculator, a C$ ++$ class library and command line program,
    http://www.math.uwaterloo.ca/~mrubinst, 2008.
  • [Sch07] Ralf Schmidt, On classical Saito-Kurokawa liftings, J. Reine Angew. Math. 604 (2007), 211-236. MR 2320318 (2008i:11066), https://doi.org/10.1515/CRELLE.2007.024
  • [Ste11] W. Stein,
    Sage: Open Source Mathematical Software (Version 4.8).
    The Sage Group, 2011.
  • [Sto08] M. Stoll,
    Genus 2 curves with small odd discriminant,
    http://www.faculty.iu-bremen.de/stoll/data/, 2008.
  • [SZ88] Nils-Peter Skoruppa and Don Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988), no. 1, 113-146. MR 958592 (89k:11029), https://doi.org/10.1007/BF01394347
  • [Tat79] J. Tate, Number theoretic background, Automorphic Forms, Representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26. MR 546607 (80m:12009)
  • [Wal81] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484 (French). MR 646366 (83h:10061)
  • [Wei09] Rainer Weissauer, Endoscopy for $ {\rm GSp}(4)$ and the Cohomology of Siegel Modular Threefolds, Lecture Notes in Mathematics, vol. 1968, Springer-Verlag, Berlin, 2009. MR 2498783 (2010h:11086)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F46

Retrieve articles in all journals with MSC (2010): 11F46


Additional Information

Nathan C. Ryan
Affiliation: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, 17837
Address at time of publication: Instituto de Matemática y Estadística – Rafael Laguardia, Universidad de la República, Montevideo, Uruguay
Email: nathan.ryan@bucknell.edu

Gonzalo Tornaría
Affiliation: Centro de Matemática, Universidad de la República, 11100 Montevideo, Uruguay
Email: tornaria@cmat.edu.uy

Ralf Schmidt
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73072
Email: rschmidt@math.ou.edu

DOI: https://doi.org/10.1090/mcom/2988
Received by editor(s): September 16, 2013
Received by editor(s) in revised form: July 29, 2014, and August 23, 2014
Published electronically: June 23, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society