Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Zeros of Dedekind zeta functions under GRH


Authors: Loïc Grenié and Giuseppe Molteni
Journal: Math. Comp. 85 (2016), 1503-1522
MSC (2010): Primary 11R42
DOI: https://doi.org/10.1090/mcom/3024
Published electronically: October 9, 2015
MathSciNet review: 3454373
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming GRH, we prove an explicit upper bound for the number of zeros of a Dedekind zeta function having imaginary part in $ [T-a,T+a]$. We also prove a bound for the multiplicity of the zeros.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, Richard Askey, and Ranjan Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [2] J. W. Bober, Database of zeros of the zeta function, http://www.lmfdb.org/zeros/zeta/, 2014.
  • [3] Emanuel Carneiro, Vorrapan Chandee, and Micah B. Milinovich, Bounding $ S(t)$ and $ S_1(t)$ on the Riemann hypothesis, Math. Ann. 356 (2013), no. 3, 939-968. MR 3063902, https://doi.org/10.1007/s00208-012-0876-z
  • [4] X. Gourdon, The $ 10^{13}$ first zeros of the Riemann zeta function, and zeros computation at very large height, 2004, http://numbers.computation.free.fr/Constants/Miscellaneous/
    zetazeros1e13-1e24.pdf
  • [5] L. Grenié and G. Molteni, Explicit smoothed prime ideals theorems under GRH, to appear in Math. Comp., 2015, DOI: https://doi.org/10.1090/mcom3039.
  • [6] L. Grenié and G. Molteni, Explicit versions of the prime ideal theorem for Dedekind zeta functions under GRH, to appear in Math. Comp., 2015, DOI: https://doi.org/10.1090/mcom3031.
  • [7] Serge Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337-345. MR 0294268 (45 #3337)
  • [8] J. E. Littlewood, On the zeros of the Riemann Zeta-function, Cambr. Phil. Soc. Proc. 22 (1924), 295-318.
  • [9] Raghavan Narasimhan and Yves Nievergelt, Complex Analysis in One Variable, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1803086 (2002e:30001)
  • [10] Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89-155. MR 0020594 (8,567e)
  • [11] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. MR 0342472 (49 #7218)
  • [12] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550 (88c:11049)
  • [13] T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions, Math. Comp. 84 (2015), 1439-1450. DOI: https://doi.org/10.1090/S0025-5718-2014-02898-6, 2014.
  • [14] Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280-292. MR 3111568, https://doi.org/10.1016/j.jnt.2013.07.017

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R42

Retrieve articles in all journals with MSC (2010): 11R42


Additional Information

Loïc Grenié
Affiliation: Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di Bergamo, viale Marconi 5, 24044 Dalmine (BG) Italy
Email: loic.grenie@gmail.com

Giuseppe Molteni
Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
Email: giuseppe.molteni1@unimi.it

DOI: https://doi.org/10.1090/mcom/3024
Received by editor(s): July 4, 2014
Received by editor(s) in revised form: October 18, 2014, and November 7, 2014
Published electronically: October 9, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society