Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients


Authors: Hoang-Long Ngo and Dai Taguchi
Journal: Math. Comp. 85 (2016), 1793-1819
MSC (2010): Primary 60H35, 41A25, 60H10, 65C30
DOI: https://doi.org/10.1090/mcom3042
Published electronically: October 30, 2015
MathSciNet review: 3471108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Euler-Maruyama approximation for multi-dimen-
sional stochastic differential equations with irregular coefficients. We provide the rate of strong convergence where the possibly discontinuous drift coefficient satisfies a one-sided Lipschitz condition and the diffusion coefficient is Hölder continuous and uniformly elliptic.


References [Enhancements On Off] (What's this?)

  • [1] Ali Foroush Bastani and Mahdieh Tahmasebi, Strong convergence of split-step backward Euler method for stochastic differential equations with non-smooth drift, J. Comput. Appl. Math. 236 (2012), no. 7, 1903-1918. MR 2863524, https://doi.org/10.1016/j.cam.2011.10.023
  • [2] V. E. Beneš, L. A. Shepp, and H. S. Witsenhausen, Some solvable stochastic control problems, Stochastics 4 (1980/81), no. 1, 39-83. MR 587428 (81m:93084), https://doi.org/10.1080/17442508008833156
  • [3] K. S. Chan and O. Stramer, Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients, Stochastic Process. Appl. 76 (1998), no. 1, 33-44. MR 1638015 (99f:60108), https://doi.org/10.1016/S0304-4149(98)00020-9
  • [4] Alexander S. Cherny and Hans-Jürgen Engelbert, Singular Stochastic Differential Equations, Lecture Notes in Mathematics, vol. 1858, Springer-Verlag, Berlin, 2005. MR 2112227 (2005j:60002)
  • [5] Michael B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607-617. MR 2436856 (2009g:65008), https://doi.org/10.1287/opre.1070.0496
  • [6] István Gyöngy, A note on Euler's approximations, Potential Anal. 8 (1998), no. 3, 205-216. MR 1625576 (99d:60060), https://doi.org/10.1023/A:1008605221617
  • [7] István Gyöngy and Nicolai Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields 105 (1996), no. 2, 143-158. MR 1392450 (97h:60058), https://doi.org/10.1007/BF01203833
  • [8] István Gyöngy and Miklós Rásonyi, A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients, Stochastic Process. Appl. 121 (2011), no. 10, 2189-2200. MR 2822773, https://doi.org/10.1016/j.spa.2011.06.008
  • [9] Nikolaos Halidias and Peter E. Kloeden, A note on the Euler-Maruyama scheme for stochastic differential equations with a discontinuous monotone drift coefficient, BIT 48 (2008), no. 1, 51-59. MR 2386114 (2009c:60150), https://doi.org/10.1007/s10543-008-0164-1
  • [10] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2130, 1563-1576. MR 2795791 (2012g:65012), https://doi.org/10.1098/rspa.2010.0348
  • [11] Kiyosi Itô and Henry P. McKean Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected; Die Grundlehren der mathematischen Wissenschaften, Band 125. MR 0345224 (49 #9963)
  • [12] Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940 (92h:60127)
  • [13] Peter E. Kloeden and Eckhard Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374 (94b:60069)
  • [14] Arturo Kohatsu-Higa and Kazuhiro Yasuda, An Ornstein-Uhlenbeck-type process which satisfies sufficient conditions for a simulation-based filtering procedure, Malliavin calculus and stochastic analysis, Springer Proc. Math. Stat., vol. 34, Springer, New York, 2013, pp. 173-193. MR 3070444, https://doi.org/10.1007/978-1-4614-5906-4_8
  • [15] A. Kohatsu-Higa, A. Makhlouf, and H. L. Ngo, Approximations of non-smooth integral type functionals of one dimensional diffusion processes, Stochastic Process. Appl. 124 (2014), no. 5, 1881-1909. MR 3170228, https://doi.org/10.1016/j.spa.2014.01.003
  • [16] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154-196. MR 2117951 (2005k:60209), https://doi.org/10.1007/s00440-004-0361-z
  • [17] N. V. Krylov, On Itô stochastic differential equations, Theory of Probab. Appl., 14, No. 2, 330-336 (1969)
  • [18] V. Lemaire and S. Menozzi, On some non asymptotic bounds for the Euler scheme, Electron. J. Probab. 15 (2010), no. 53, 1645-1681. MR 2735377 (2012b:60237)
  • [19] Remigius Mikulevičius and Eckhard Platen, Rate of convergence of the Euler approximation for diffusion processes, Math. Nachr. 151 (1991), 233-239. MR 1121206 (93b:60122), https://doi.org/10.1002/mana.19911510114
  • [20] Henri Schurz, Stability, Stationarity, and Boundedness of some Implicit Numerical Methods for Stochastic Differential Equations and Applications, Logos Verlag Berlin, Berlin, 1997. MR 1991701
  • [21] A. Ju. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 434-452, 480 (Russian). MR 568986 (82f:60147)
  • [22] Toshio Yamada and Shinzo Watanabe, On the uniqueness of solutions of stochastic differential equations., J. Math. Kyoto Univ. 11 (1971), 155-167. MR 0278420 (43 #4150)
  • [23] Liqing Yan, The Euler scheme with irregular coefficients, Ann. Probab. 30 (2002), no. 3, 1172-1194. MR 1920104 (2003f:60115), https://doi.org/10.1214/aop/1029867124
  • [24] A. K. Zvonkin, A transformation of the phase space of a diffusion process that will remove the drift, Mat. Sb. (N.S.) 93(135) (1974), 129-149, 152 (Russian). MR 0336813 (49 #1586)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 60H35, 41A25, 60H10, 65C30

Retrieve articles in all journals with MSC (2010): 60H35, 41A25, 60H10, 65C30


Additional Information

Hoang-Long Ngo
Affiliation: Department of Mathematics and Informatics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
Email: ngolong@hnue.edu.vn

Dai Taguchi
Affiliation: Department of Mathematical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
Email: dai.taguchi.dai@gmail.com

DOI: https://doi.org/10.1090/mcom3042
Keywords: Euler-Maruyama approximation, strong approximation, rate of convergence, stochastic differential equation, irregular coefficient
Received by editor(s): November 10, 2013
Received by editor(s) in revised form: April 10, 2014, July 6, 2014, October 16, 2014, and January 24, 2015
Published electronically: October 30, 2015
Additional Notes: This research was supported by grants of the Japanese government.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society