Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Fourier coefficients of sextic theta series


Authors: Reinier Bröker and Jeff Hoffstein
Journal: Math. Comp. 85 (2016), 1901-1927
MSC (2010): Primary 11Y35
DOI: https://doi.org/10.1090/mcom3044
Published electronically: October 21, 2015
MathSciNet review: 3471113
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article focuses on the theta series on the 6-fold cover of $ \mathrm {GL}_2$. We investigate the Fourier coefficients $ \tau (r)$ of the theta series, and give partially proven, partially conjectured values for $ \tau (\pi )^2$, $ \tau (\pi ^2)$ and $ \tau (\pi ^4)$ for prime values $ \pi $.


References [Enhancements On Off] (What's this?)

  • [1] Ben Brubaker, Alina Bucur, Gautam Chinta, Sharon Frechette, and Jeffrey Hoffstein, Nonvanishing twists of GL(2) automorphic $ L$-functions, Int. Math. Res. Not. 78 (2004), 4211-4239. MR 2111362 (2005h:11099), https://doi.org/10.1155/S1073792804133473
  • [2] J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Proceedings of an instructional conference organized by the London Mathematical Society, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665 (35 #6500)
  • [3] Gautam Chinta, Solomon Friedberg, and Jeffrey Hoffstein, Double Dirichlet series and theta functions, Contributions in Analytic and Algebraic Number Theory, Springer Proc. Math., vol. 9, Springer, New York, 2012, pp. 149-170. MR 3060459, https://doi.org/10.1007/978-1-4614-1219-9_6
  • [4] Henri Cohen, Number Theory. Vol. II. Analytic and Modern Tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007. MR 2312338 (2008e:11002)
  • [5] C. Eckhardt, Eine Vermuting über biquadratische Thetareihen und ihre numerische Untersuchung, PhD thesis, University of Göttingen, 1989.
  • [6] C. Eckhardt and S. J. Patterson, On the Fourier coefficients of biquadratic theta series, Proc. London Math. Soc. (3) 64 (1992), no. 2, 225-264. MR 1143226 (93a:11036), https://doi.org/10.1112/plms/s3-64.2.225
  • [7] S. Friedberg, D. Ginzburg, Descent and theta functions for metaplectic groups, preprint, 2014.
  • [8] Jeff Hoffstein, Eisenstein series and theta functions on the metaplectic group, Theta functions: from the classical to the modern, CRM Proc. Lecture Notes, vol. 1, Amer. Math. Soc., Providence, RI, 1993, pp. 65-104. MR 1224051 (94h:11050)
  • [9] D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. 59 (1984), 35-142. MR 743816 (85g:22033)
  • [10] T. Kubota, On Automorphic Forms and the Reciprocity Law in a Number Field, Springer, Lecture Notes Math., (1973), p. 348.
  • [11] Jürgen Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, vol. 322, Springer-Verlag, Berlin, 1999.
  • [12] S. J. Patterson, A cubic analogue of the theta series, J. Reine Angew. Math. 296 (1977), 125-161. MR 0563068 (58 #27795a)
  • [13] S. J. Patterson, A heuristic principle and applications to Gauss sums, J. Indian Math. Soc. (N.S.) 52 (1987), 1-22 (1988). MR 989227 (90g:11138)
  • [14] S. J. Patterson, The distribution of general Gauss sums and similar arithmetic functions at prime arguments, Proc. London Math. Soc. (3) 54 (1987), no. 2, 193-215. MR 872805 (88b:11054), https://doi.org/10.1112/plms/s3-54.2.193
  • [15] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111-130. MR 546667 (81e:10033)
  • [16] Toshiaki Suzuki, Some results on the coefficients of the biquadratic theta series, J. Reine Angew. Math. 340 (1983), 70-117. MR 691962 (84g:10055), https://doi.org/10.1515/crll.1983.340.70
  • [17] J. T. Tate, Fourier analysis in number fields, and Hecke's zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 305-347. MR 0217026 (36 #121)
  • [18] G. Wellhausen, Fourierkoeffizienten von Thetafunktionen sechster Ordnung, PhD thesis, University of Göttingen, 1996.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11Y35

Retrieve articles in all journals with MSC (2010): 11Y35


Additional Information

Reinier Bröker
Affiliation: Brown University, Department of Mathematics, Box 1917, Providence, Rhode Island
Email: reinier@math.brown.edu

Jeff Hoffstein
Affiliation: Brown University, Department of Mathematics, Box 1917, Providence, Rhode Island
Email: jhoff@math.brown.edu

DOI: https://doi.org/10.1090/mcom3044
Received by editor(s): February 21, 2014
Received by editor(s) in revised form: October 18, 2014, and January 21, 2015
Published electronically: October 21, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society