Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces


Authors: Bernardo Cockburn and Alan Demlow
Journal: Math. Comp. 85 (2016), 2609-2638
MSC (2010): Primary 58J32, 65N15, 65N30
DOI: https://doi.org/10.1090/mcom/3093
Published electronically: March 4, 2016
MathSciNet review: 3522964
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define and analyze hybridizable discontinuous Galerkin methods for the Laplace-Beltrami problem on implicitly defined surfaces. We show that the methods can retain the same convergence and superconvergence properties they enjoy in the case of flat surfaces. Special attention is paid to the relative effect of approximation of the surface and that introduced by discretizing the equations. In particular, we show that when the geometry is approximated by polynomials of the same degree of those used to approximate the solution, although the optimality of the approximations is preserved, the superconvergence is lost. To recover it, the surface has to be approximated by polynomials of one additional degree. We also consider mixed surface finite element methods as a natural part of our presentation. Numerical experiments verifying and complementing our theoretical results are shown.


References [Enhancements On Off] (What's this?)

  • [1] P. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stinner, and M. Verani, High order discontinuous Galerkin methods on surfaces, arXiv e-prints (2014).
  • [2] Douglas N. Arnold, Daniele Boffi, and Richard S. Falk, Approximation by quadrilateral finite elements, Math. Comp. 71 (2002), no. 239, 909-922 (electronic). MR 1898739 (2003c:65112), https://doi.org/10.1090/S0025-5718-02-01439-4
  • [3] Douglas N. Arnold, Daniele Boffi, and Richard S. Falk, Quadrilateral $ H({\rm div})$ finite elements, SIAM J. Numer. Anal. 42 (2005), no. 6, 2429-2451. MR 2139400, https://doi.org/10.1137/S0036142903431924
  • [4] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749-1779. MR 1885715 (2002k:65183), https://doi.org/10.1137/S0036142901384162
  • [5] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281-354. MR 2594630 (2011f:58005), https://doi.org/10.1090/S0273-0979-10-01278-4
  • [6] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II--a general-purpose object-oriented finite element library, ACM Trans. Math. Software 33 (2007), no. 4, Art. 24, 27. MR 2404402 (2009b:65292), https://doi.org/10.1145/1268776.1268779
  • [7] W. Bangerth, T. Heister, G. Kanschat et al., deal.II, Differential Equations Analysis Library, Technical Reference.
    http://www.dealii.org.
  • [8] A. Bendali, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. II. The discrete problem, Math. Comp. 43 (1984), no. 167, 47-68. MR 744924 (86i:65071b), https://doi.org/10.2307/2007399
  • [9] Andrea Bonito and Joseph E. Pasciak, Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator, Math. Comp. 81 (2012), no. 279, 1263-1288. MR 2904579, https://doi.org/10.1090/S0025-5718-2011-02551-2
  • [10] Franco Brezzi and Michel Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [11] Snorre H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation, Math. Comp. 73 (2004), no. 245, 143-167 (electronic). MR 2034114 (2004m:65224), https://doi.org/10.1090/S0025-5718-03-01581-3
  • [12] L. Chen, iFEM: An innovative finite element method package in Matlab, Technical Report, University of California-Irvine (2009).
  • [13] Yanlai Chen and Bernardo Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes, Math. Comp. 83 (2014), no. 285, 87-111. MR 3120583, https://doi.org/10.1090/S0025-5718-2013-02711-1
  • [14] Bernardo Cockburn, Bo Dong, and Johnny Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comp. 77 (2008), no. 264, 1887-1916. MR 2429868 (2009d:65166), https://doi.org/10.1090/S0025-5718-08-02123-6
  • [15] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319-1365. MR 2485455 (2010b:65251), https://doi.org/10.1137/070706616
  • [16] Bernardo Cockburn, Johnny Guzmán, and Haiying Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp. 78 (2009), no. 265, 1-24. MR 2448694 (2009i:65213), https://doi.org/10.1090/S0025-5718-08-02146-7
  • [17] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas, A projection-based error analysis of HDG methods, Math. Comp. 79 (2010), no. 271, 1351-1367. MR 2629996 (2011d:65354), https://doi.org/10.1090/S0025-5718-10-02334-3
  • [18] Bernardo Cockburn, Weifeng Qiu, and Ke Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp. 81 (2012), no. 279, 1327-1353. MR 2904581, https://doi.org/10.1090/S0025-5718-2011-02550-0
  • [19] Bernardo Cockburn, Weifeng Qiu, and Ke Shi, Superconvergent HDG methods on isoparametric elements for second-order elliptic problems, SIAM J. Numer. Anal. 50 (2012), no. 3, 1417-1432. MR 2970749, https://doi.org/10.1137/110840790
  • [20] Bernardo Cockburn and Wujun Zhang, A posteriori error estimates for HDG methods, J. Sci. Comput. 51 (2012), no. 3, 582-607. MR 2914423, https://doi.org/10.1007/s10915-011-9522-2
  • [21] Bernardo Cockburn and Wujun Zhang, A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 51 (2013), no. 1, 676-693. MR 3033028, https://doi.org/10.1137/120866269
  • [22] Andreas Dedner, Pravin Madhavan, and Björn Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer. Anal. 33 (2013), no. 3, 952-973. MR 3081490, https://doi.org/10.1093/imanum/drs033
  • [23] Alan Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805-827. MR 2485433 (2010a:65233), https://doi.org/10.1137/070708135
  • [24] Alan Demlow and Gerhard Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), no. 1, 421-442 (electronic). MR 2285862 (2008c:65320), https://doi.org/10.1137/050642873
  • [25] François Dubois, Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: numerical analysis of a model problem, SIAM J. Numer. Anal. 27 (1990), no. 5, 1103-1141. MR 1061122 (92c:65127), https://doi.org/10.1137/0727065
  • [26] Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 142-155. MR 976234 (90i:65194), https://doi.org/10.1007/BFb0082865
  • [27] Charles M. Elliott and Björn Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010), no. 18, 6585-6612. MR 2660322 (2011j:74092), https://doi.org/10.1016/j.jcp.2010.05.014
  • [28] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249-277 (English, with French summary). MR 592753 (82j:65076)
  • [29] David Gilbarg and Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [30] Sven Groß, Volker Reichelt, and Arnold Reusken, A finite element based level set method for two-phase incompressible flows, Comput. Vis. Sci. 9 (2006), no. 4, 239-257. MR 2280477 (2007j:76104), https://doi.org/10.1007/s00791-006-0024-y
  • [31] R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal. 40 (2002), no. 1, 66-86. MR 1921910 (2003j:78059), https://doi.org/10.1137/S0036142901387580
  • [32] Michael Holst and Ari Stern, Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces, Found. Comput. Math. 12 (2012), no. 3, 263-293. MR 2915563, https://doi.org/10.1007/s10208-012-9119-7
  • [33] Robert M. Kirby, Spencer J. Sherwin, and Bernardo Cockburn, To CG or to HDG: a comparative study, J. Sci. Comput. 51 (2012), no. 1, 183-212. MR 2891951, https://doi.org/10.1007/s10915-011-9501-7
  • [34] U. Langer and S. E. Moore, Discontinuous Galerkin isogeometric analysis of elliptic pde on surfaces, Tech. Rep. 2014-01, Johann Radon Institute for Computational and Applied Mathematics, 2014.
  • [35] K. Larsson and M. G. Larson, A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces, arXiv e-prints (2013).
  • [36] Khamron Mekchay, Pedro Morin, and Ricardo H. Nochetto, AFEM for the Laplace-Beltrami operator on graphs: design and conditional contraction property, Math. Comp. 80 (2011), no. 274, 625-648. MR 2772090 (2012c:65202), https://doi.org/10.1090/S0025-5718-2010-02435-4
  • [37] J.-C. Nédélec, Computation of eddy currents on a surface in $ {\bf R}^{3}$ by finite element methods, SIAM J. Numer. Anal. 15 (1978), no. 3, 580-594. MR 0495761 (58 #14409)
  • [38] Maxim A. Olshanskii, Arnold Reusken, and Jörg Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3339-3358. MR 2551197 (2010k:65265), https://doi.org/10.1137/080717602
  • [39] M. Reuter, F.-E. Wolter, M. Shenton, and M. Niethammer, Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis, Computer-Aided Design 41 (2009), 739-755.
  • [40] Paul Steinmann, On boundary potential energies in deformational and configurational mechanics, J. Mech. Phys. Solids 56 (2008), no. 3, 772-800. MR 2394163 (2009d:74010), https://doi.org/10.1016/j.jmps.2007.07.001
  • [41] Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151-167 (English, with French summary). MR 1086845 (92a:65303)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 58J32, 65N15, 65N30

Retrieve articles in all journals with MSC (2010): 58J32, 65N15, 65N30


Additional Information

Bernardo Cockburn
Affiliation: School of Mathematics, University of Minnesota, Minnesota 55455 – and – Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dahran, Saudi Arabia
Email: cockburn@math.umn.edu

Alan Demlow
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843–3368
Email: demlow@math.tamu.edu

DOI: https://doi.org/10.1090/mcom/3093
Keywords: Laplace-Beltrami operator, surface finite element methods, a priori error estimates, boundary value problems on surfaces, discontinuous Galerkin methods, hybridizable finite element methods, mixed finite element methods
Received by editor(s): June 19, 2014
Received by editor(s) in revised form: February 17, 2015
Published electronically: March 4, 2016
Additional Notes: The first author was partially supported by NSF grant DMS-1115331.
The second author was partially supported by NSF grant DMS-1318652.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society