Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

No two non-real conjugates of a Pisot number have the same imaginary part


Authors: Artūras Dubickas, Kevin G. Hare and Jonas Jankauskas
Journal: Math. Comp. 86 (2017), 935-950
MSC (2010): Primary 11R06; Secondary 11R09
DOI: https://doi.org/10.1090/mcom/3103
Published electronically: April 13, 2016
MathSciNet review: 3584555
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the number $ \alpha =(1+\sqrt {3+2\sqrt {5}})/2$ with minimal polynomial $ x^4-2x^3+x-1$ is the only Pisot number whose four distinct conjugates $ \alpha _1,\alpha _2,\alpha _3,\alpha _4$ satisfy the additive relation $ \alpha _1+\alpha _2=\alpha _3+\alpha _4$. This implies that there exists no two non-real conjugates of a Pisot number with the same imaginary part and also that at most two conjugates of a Pisot number can have the same real part. On the other hand, we prove that similar four term equations $ \alpha _1 = \alpha _2 + \alpha _3+\alpha _4$ or $ \alpha _1 + \alpha _2 + \alpha _3 + \alpha _4 =0$ cannot be solved in conjugates of a Pisot number $ \alpha $. We also show that the roots of the Siegel's polynomial $ x^3-x-1$ are the only solutions to the three term equation $ \alpha _1+\alpha _2+\alpha _3=0$ in conjugates of a Pisot number. Finally, we prove that there exists no Pisot number whose conjugates satisfy the relation $ \alpha _1=\alpha _2+\alpha _3$.


References [Enhancements On Off] (What's this?)

  • [1] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem Numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044 (93k:11095)
  • [2] Frits Beukers and Don Zagier, Lower bounds of heights of points on hypersurfaces, Acta Arith. 79 (1997), no. 2, 103-111. MR 1438596 (98h:11082)
  • [3] David W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978), no. 144, 1244-1260. MR 0491587 (58 #10812)
  • [4] David W. Boyd, Pisot numbers in the neighborhood of a limit point. II, Math. Comp. 43 (1984), no. 168, 593-602. MR 758207 (87c:11096b), https://doi.org/10.2307/2008300
  • [5] David W. Boyd, Pisot numbers in the neighbourhood of a limit point. I, J. Number Theory 21 (1985), no. 1, 17-43. MR 804914 (87c:11096a), https://doi.org/10.1016/0022-314X(85)90010-1
  • [6] Arturas Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 (2002), no. 2, 571-585. MR 1936938 (2004c:11194)
  • [7] Artūras Dubickas and Jonas Jankauskas, Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc. 30 (2015), no. 2, 219-235. MR 3357522
  • [8] Artūras Dubickas and C. J. Smyth, On the lines passing through two conjugates of a Salem number, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 29-37. MR 2388230 (2009f:11132), https://doi.org/10.1017/S0305004107000692
  • [9] W. Hart, F. Johansson and S. Pancratz, FLINT: Fast Library for Number Theory, 2013, Version 2.4.4, http://flintlib.org.
  • [10] J. Garza, M. I. M. Ishak, and C. Pinner, On the product of heights of algebraic numbers summing to real numbers, Acta Arith. 142 (2010), no. 1, 51-58. MR 2601048 (2011b:11151), https://doi.org/10.4064/aa142-1-4
  • [11] G. Höhn and N.-P. Skoruppa, Un résultat de Schinzel, J. Théor. Nombres Bordeaux 5 (1993), no. 1, 185 (French). MR 1251237 (94j:11103)
  • [12] V. A. Kurbatov, Galois extensions of prime degree and their primitive elements, Soviet Math. (Izv. VUZ) 21 (1977), 49-52.
  • [13] J. C. Lagarias, H. A. Porta, and K. B. Stolarsky, Asymmetric tent map expansions. I. Eventually periodic points, J. London Math. Soc. (2) 47 (1993), no. 3, 542-556. MR 1214915 (94h:58139), https://doi.org/10.1112/jlms/s2-47.3.542
  • [14] J. C. Lagarias, H. A. Porta, and K. B. Stolarsky, Asymmetric tent map expansions. II. Purely periodic points, Illinois J. Math. 38 (1994), no. 4, 574-588. MR 1283009 (96b:58093)
  • [15] Maurice Mignotte, Sur les conjugués des nombres de Pisot, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 2, 21 (French, with English summary). MR 740081 (85b:11078)
  • [16] Władysław Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267 (2005c:11131)
  • [17] R. Padovan, Dom Hans Van Der Laan and the plastic number, Nexus IV: Architecture and Mathematics, Kim Williams Books, 2002, pp. 181-193.
  • [18] R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103-108. MR 0010149 (5,254a)
  • [19] Charles L. Samuels, Lower bounds on the projective heights of algebraic points, Acta Arith. 125 (2006), no. 1, 41-50. MR 2275216 (2008c:11140), https://doi.org/10.4064/aa125-1-4
  • [20] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399. MR 0360515 (50 #12963)
  • [21] Carl Ludwig Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597-602. MR 0010579 (6,39b)
  • [22] C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175. MR 0289451 (44 #6641)
  • [23] C. J. Smyth, The conjugates of algebraic integers, Amer. Math. Monthly 82 (1975), 86.
  • [24] C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 (1981/82), no. 4, 333-346. MR 667044 (84b:10079)
  • [25] C. J. Smyth, There are only eleven special Pisot numbers, Bull. London Math. Soc. 31 (1999), no. 1, 1-5. MR 1651041 (99h:11118), https://doi.org/10.1112/S0024609398005141
  • [26] Chris Smyth, The Mahler measure of algebraic numbers: a survey, Number Theory and Polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 322-349. MR 2428530 (2009j:11172), https://doi.org/10.1017/CBO9780511721274.021
  • [27] Chris Smyth, Seventy years of Salem numbers, Bull. Lond. Math. Soc. 47 (2015), no. 3, 379-395. MR 3354434, https://doi.org/10.1112/blms/bdv027

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R06, 11R09

Retrieve articles in all journals with MSC (2010): 11R06, 11R09


Additional Information

Artūras Dubickas
Affiliation: Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
Email: arturas.dubickas@mif.vu.lt

Kevin G. Hare
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: kghare@uwaterloo.ca

Jonas Jankauskas
Affiliation: Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania – and – Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: jonas.jankauskas@gmail.com

DOI: https://doi.org/10.1090/mcom/3103
Keywords: Pisot numbers, Mahler's measure, additive relations
Received by editor(s): May 12, 2015
Received by editor(s) in revised form: August 21, 2015
Published electronically: April 13, 2016
Additional Notes: The research of the first and third authors was supported in part by the Research Council of Lithuania Grant MIP-068/2013/LSS-110000-740
The research of the second author was supported by NSERC Grant RGPIN-2014-03154.
Computational support was provided in part by the Canadian Foundation for Innovation, and the Ontario Research Fund.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society