Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finite element approximation for the dynamics of asymmetric fluidic biomembranes


Authors: John W. Barrett, Harald Garcke and Robert Nürnberg
Journal: Math. Comp. 86 (2017), 1037-1069
MSC (2010): Primary 65M60, 65M12, 76M10, 76Z99, 92C05, 35Q35, 76D05
DOI: https://doi.org/10.1090/mcom/3162
Published electronically: August 18, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a parametric finite element approximation of a fluidic membrane whose evolution is governed by a surface Navier-Stokes equation coupled to bulk Navier-Stokes equations. The elastic properties of the membrane are modelled with the help of curvature energies of Willmore and Helfrich type. Forces stemming from these energies act on the surface fluid, together with a forcing from the bulk fluid. Using ideas from PDE constrained optimization, a weak formulation is derived, which allows for a stable semi-discretization. An important new feature of the present work is that we are able to also deal with spontaneous curvature and an area difference elasticity contribution in the curvature energy. This allows for the modelling of asymmetric membranes, which compared to the symmetric case lead to quite different shapes. This is demonstrated in the numerical computations presented.


References [Enhancements On Off] (What's this?)

  • [1] D. Abreu, M. Levant, V. Steinberg, and U. Seifert, Fluid vesicles in flow, Adv. Colloid Interface Sci. 208 (2014), 129-141, DOI 10.1016/j.cis.2014.02.004.
  • [2] Sebastian Aland, Sabine Egerer, John Lowengrub, and Axel Voigt, Diffuse interface models of locally inextensible vesicles in a viscous fluid, J. Comput. Phys. 277 (2014), 32-47. MR 3254223, https://doi.org/10.1016/j.jcp.2014.08.016
  • [3] Marino Arroyo and Antonio DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E (3) 79 (2009), no. 3, 031915, 17. MR 2497175, https://doi.org/10.1103/PhysRevE.79.031915
  • [4] Eberhard Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math. 88 (2001), no. 2, 203-235. MR 1826211, https://doi.org/10.1007/PL00005443
  • [5] John W. Barrett, Harald Garcke, and Robert Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in $ \mathbb{R}^3$, J. Comput. Phys. 227 (2008), no. 9, 4281-4307. MR 2406538, https://doi.org/10.1016/j.jcp.2007.11.023
  • [6] John W. Barrett, Harald Garcke, and Robert Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput. 31 (2008), no. 1, 225-253. MR 2460777, https://doi.org/10.1137/070700231
  • [7] John W. Barrett, Harald Garcke, and Robert Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves, Numer. Math. 120 (2012), no. 3, 489-542. MR 2890298, https://doi.org/10.1007/s00211-011-0416-x
  • [8] John W. Barrett, Harald Garcke, and Robert Nürnberg, Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow, Comput. Methods Appl. Mech. Engrg. 267 (2013), 511-530. MR 3127314, https://doi.org/10.1016/j.cma.2013.09.023
  • [9] John W. Barrett, Harald Garcke, and Robert Nürnberg, A stable parametric finite element discretization of two-phase Navier-Stokes flow, J. Sci. Comput. 63 (2015), no. 1, 78-117. MR 3315269, https://doi.org/10.1007/s10915-014-9885-2
  • [10] John W. Barrett, Harald Garcke, and Robert Nürnberg, On the stable numerical approximation of two-phase flow with insoluble surfactant, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 2, 421-458. MR 3342212
  • [11] J. W. Barrett, H. Garcke, and R. Nürnberg, A stable numerical method for the dynamics of fluidic biomembranes, Numer. Math. (2016) (to appear, DOI:10.1007/s00211-015-0787-5).
  • [12] Andrea Bonito, Ricardo H. Nochetto, and M. Sebastian Pauletti, Parametric FEM for geometric biomembranes, J. Comput. Phys. 229 (2010), no. 9, 3171-3188. MR 2601095, https://doi.org/10.1016/j.jcp.2009.12.036
  • [13] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Dynamics of biomembranes: effect of the bulk fluid, Math. Model. Nat. Phenom. 6 (2011), no. 5, 25-43. MR 2825221, https://doi.org/10.1051/mmnp/20116502
  • [14] P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26 (1970), no. 1, 61-81, DOI 10.1016/S0022-5193(70)80032-7.
  • [15] Klaus Deckelnick, Gerhard Dziuk, and Charles M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139-232. MR 2168343, https://doi.org/10.1017/S0962492904000224
  • [16] Qiang Du, Chun Liu, and Xiaoqiang Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys. 198 (2004), no. 2, 450-468. MR 2062909, https://doi.org/10.1016/j.jcp.2004.01.029
  • [17] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math. 58 (1991), no. 6, 603-611. MR 1083523, https://doi.org/10.1007/BF01385643
  • [18] Gerhard Dziuk, Computational parametric Willmore flow, Numer. Math. 111 (2008), no. 1, 55-80. MR 2448203, https://doi.org/10.1007/s00211-008-0179-1
  • [19] Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289-396. MR 3038698
  • [20] Charles M. Elliott and Björn Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010), no. 18, 6585-6612. MR 2660322, https://doi.org/10.1016/j.jcp.2010.05.014
  • [21] Thomas Franke, Ronald H. W. Hoppe, Christopher Linsenmann, Lothar Schmid, Carina Willbold, and Achim Wixforth, Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows, Comput. Vis. Sci. 14 (2011), no. 4, 167-180. MR 2891614, https://doi.org/10.1007/s00791-012-0172-1
  • [22] Vivette Girault and Pierre-Arnaud Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
  • [23] Sven Gross and Arnold Reusken, Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics, vol. 40, Springer-Verlag, Berlin, 2011. MR 2799400
  • [24] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. 28c (1973), 693-703, DOI 10.1515/znc-1973-11-1209.
  • [25] Wei-Fan Hu, Yongsam Kim, and Ming-Chih Lai, An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows. part A, J. Comput. Phys. 257 (2014), no. part A, 670-686. MR 3129554, https://doi.org/10.1016/j.jcp.2013.10.018
  • [26] M. M. Kamal, D. Mills, M. Grzybek, and J. Howard, Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature, Proc. Natl. Acad. Sci. USA 106 (2009), no. 52, 22245-22250, DOI 10.1073/pnas.0907354106.
  • [27] M. Köhne and D. Lengeler, Local well-posedness for relaxational fluid vesicle dynamics, 2015, http://arxiv.org/abs/1512.02941.
  • [28] T. Krüger, M. Gross, D. Raabe, and F. Varnik, Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells, Soft Matter 9 (2013), no. 37, 9008-9015, DOI 10.1039/C3SM51645H.
  • [29] Aymen Laadhari, Pierre Saramito, and Chaouqi Misbah, Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods, J. Comput. Phys. 263 (2014), 328-352. MR 3165700, https://doi.org/10.1016/j.jcp.2013.12.032
  • [30] D. Lengeler, On a Stokes-type system arising in fluid vesicle dynamics, 2015, http://arxiv.org/abs/1506.08991.
  • [31] S. Martens and H. T. McMahon, Mechanisms of membrane fusion: disparate players and common principles, Nat. Rev. Mol. Cell. Biol. 9 (2008), no. 7, 543-556, DOI 10.1038/nrm2417.
  • [32] J. L. McWhirter, H. Noguchi, and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, Proc. Natl. Acad. Sci. USA 106 (2009), no. 15, 6039-6043, DOI 10.1073/pnas.0811484106.
  • [33] M. Mercker, A. Marciniak-Czochra, T. Richter, and D. Hartmann, Modeling and computing of deformation dynamics of inhomogeneous biological surfaces, SIAM J. Appl. Math. 73 (2013), no. 5, 1768-1792. MR 3095724, https://doi.org/10.1137/120885553
  • [34] L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E 49 (1994), no. 6, 5389-5407, DOI 10.1103/PhysRevE.49.5389.
  • [35] M. Rahimi and M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes, Phys. Rev. E 86 (2012), no. 1, 011932, DOI 10.1103/Phys RevE.86.011932.
  • [36] Diego S. Rodrigues, Roberto F. Ausas, Fernando Mut, and Gustavo C. Buscaglia, A semi-implicit finite element method for viscous lipid membranes, J. Comput. Phys. 298 (2015), 565-584. MR 3374565, https://doi.org/10.1016/j.jcp.2015.06.010
  • [37] David Salac and Michael J. Miksis, Reynolds number effects on lipid vesicles, J. Fluid Mech. 711 (2012), 122-146. MR 2996664, https://doi.org/10.1017/jfm.2012.380
  • [38] Alfred Schmidt and Kunibert G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. With 1 CD-ROM (Unix/Linux). MR 2127659
  • [39] Stephan Schmidt and Volker Schulz, Shape derivatives for general objective functions and the incompressible Navier-Stokes equations, Control Cybernet. 39 (2010), no. 3, 677-713. MR 2791367
  • [40] U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys. 46 (1997), no. 1, 13-137, DOI 10.1080/00018739700101488.
  • [41] Lingling Shi, Tsorng-Whay Pan, and Roland Glowinski, Three-dimensional numerical simulation of red blood cell motion in Poiseuille flows, Internat. J. Numer. Methods Fluids 76 (2014), no. 7, 397-415. MR 3268137, https://doi.org/10.1002/fld.3939
  • [42] Fredi Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112, American Mathematical Society, Providence, RI, 2010. Translated from the 2005 German original by Jürgen Sprekels. MR 2583281
  • [43] T. J. Willmore, Riemannian Geometry, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR 1261641
  • [44] W. Wintz, H.-G. Döbereiner, and U. Seifert, Starfish vesicles, Europhys. Lett. 33 (1996), no. 5, 403-408.
  • [45] P. Ziherl and S. Svetina, Nonaxisymmetric phospholipid vesicles: Rackets, boomerangs, and starfish, Europhys. Lett. 70 (2005), no. 5, 690-696.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 65M12, 76M10, 76Z99, 92C05, 35Q35, 76D05

Retrieve articles in all journals with MSC (2010): 65M60, 65M12, 76M10, 76Z99, 92C05, 35Q35, 76D05


Additional Information

John W. Barrett
Affiliation: Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
Email: j.barrett@imperial.ac.uk

Harald Garcke
Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email: harald.garcke@ur.de

Robert Nürnberg
Affiliation: Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
Email: robert.nurnberg@imperial.ac.uk

DOI: https://doi.org/10.1090/mcom/3162
Received by editor(s): March 2, 2015
Received by editor(s) in revised form: October 13, 2015
Published electronically: August 18, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society