Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A minimal-variable symplectic integrator on spheres


Authors: Robert McLachlan, Klas Modin and Olivier Verdier
Journal: Math. Comp. 86 (2017), 2325-2344
MSC (2010): Primary 37J15, 37M15, 65P10
DOI: https://doi.org/10.1090/mcom/3153
Published electronically: November 16, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a symplectic, globally defined, minimal-variable,
equivariant integrator on products of 2-spheres. Examples of corresponding Hamiltonian systems, called spin systems, include the reduced free rigid body, the motion of point vortices on a sphere, and the classical Heisenberg spin chain, a spatial discretisation of the Landau-Lifshitz equation. The existence of such an integrator is remarkable, as the sphere is neither a vector space, nor a cotangent bundle, has no global coordinate chart, and its symplectic form is not even exact. Moreover, the formulation of the integrator is very simple, and resembles the geodesic midpoint method, although the latter is not symplectic.


References [Enhancements On Off] (What's this?)

  • [1] Hassan Aref, Point vortex dynamics: a classical mathematics playground, J. Math. Phys. 48 (2007), no. 6, 065401, 23. MR 2337012, https://doi.org/10.1063/1.2425103
  • [2] Mark A. Austin, P. S. Krishnaprasad, and Li Sheng Wang, Almost Poisson integration of rigid body systems, J. Comput. Phys. 107 (1993), no. 1, 105-117. MR 1226376, https://doi.org/10.1006/jcph.1993.1128
  • [3] V. Bogomolov, Dynamics of vorticity at a sphere, Fluid Dynamics 12 (1977), 863-870.
  • [4] P. J. Channell and J. C. Scovel, Integrators for Lie-Poisson dynamical systems, Phys. D 50 (1991), no. 1, 80-88. MR 1115874, https://doi.org/10.1016/0167-2789(91)90081-J
  • [5] B. Chirikov and D. Shepelyansky, Chirikov standard map, Scholarpedia 3 (2008), 3550.
  • [6] G. J. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal. 7 (1987), no. 1, 1-13. MR 967831, https://doi.org/10.1093/imanum/7.1.1
  • [7] Percy Deift, Luen Chau Li, and Carlos Tomei, Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions, Mem. Amer. Math. Soc. 100 (1992), no. 479, viii+101. MR 1124113, https://doi.org/10.1090/memo/0479
  • [8] Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. MR 2221614
  • [9] T. Humphreys and P. S. Marcus, Vortex street dynamics: The selection mechanism for the areas and locations of Jupiter's vortices, Journal of the Atmospheric Sciences 64 (2007), 1318-1333.
  • [10] Laurent Jay, Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal. 33 (1996), no. 1, 368-387. MR 1377258, https://doi.org/10.1137/0733019
  • [11] K. Kaneko (ed.), Theory and Applications of Coupled Map Lattices, Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993. MR 1222254
  • [12] Rangachari Kidambi and Paul K. Newton, Motion of three point vortices on a sphere, Phys. D 116 (1998), no. 1-2, 143-175. MR 1621912, https://doi.org/10.1016/S0167-2789(97)00236-4
  • [13] B. Grammaticos, Y. Kosmann-Schwarzbach, and T. Tamizhmani (eds.), Discrete Integrable Systems, Lecture Notes in Physics, vol. 644, Springer-Verlag, Berlin, 2004. MR 2088466
  • [14] M. Lakshmanan, The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369 (2011), no. 1939, 1280-1300. MR 2774539, https://doi.org/10.1098/rsta.2010.0319
  • [15] Frederic Laurent-Polz, James Montaldi, and Mark Roberts, Point vortices on the sphere: stability of symmetric relative equilibria, J. Geom. Mech. 3 (2011), no. 4, 439-486. MR 2888015, https://doi.org/10.3934/jgm.2011.3.439
  • [16] T. Lee, Can time be a discrete dynamical variable?, Physics Letters B 122 (1983), 217-220.
  • [17] T. D. Lee, Difference equations and conservation laws, J. Statist. Phys. 46 (1987), no. 5-6, 843-860. MR 893121, https://doi.org/10.1007/BF01011145
  • [18] D. Lewis and N. Nigam, Geometric integration on spheres and some interesting applications, J. Comput. Appl. Math. 151 (2003), no. 1, 141-170. MR 1950234, https://doi.org/10.1016/S0377-0427(02)00743-4
  • [19] Chjan Lim, James Montaldi, and Mark Roberts, Relative equilibria of point vortices on the sphere, Phys. D 148 (2001), no. 1-2, 97-135. MR 1811389, https://doi.org/10.1016/S0167-2789(00)00167-6
  • [20] C. Lubich, B. Walther, and B. Brügmann, Symplectic integration of post-Newtonian equations of motion with spin, Phys. Rev. D 81 (2010), 104025.
  • [21] Jerrold Marsden and Alan Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D 7 (1983), no. 1-3, 305-323. MR 719058, https://doi.org/10.1016/0167-2789(83)90134-3
  • [22] Jerrold E Marsden, Sergey Pekarsky, and Steve Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity 12 (1999), no. 6, 1647-1662. MR 1726670, https://doi.org/10.1088/0951-7715/12/6/314
  • [23] Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999. MR 1723696
  • [24] Robert I. McLachlan, Klas Modin, Hans Munthe-Kaas, and Olivier Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math. 133 (2016), no. 3, 599-622. MR 3510021, https://doi.org/10.1007/s00211-015-0753-2
  • [25] Robert I. McLachlan, Klas Modin, and Olivier Verdier, Collective symplectic integrators, Nonlinearity 27 (2014), no. 6, 1525-1542. MR 3215845, https://doi.org/10.1088/0951-7715/27/6/1525
  • [26] Robert I. McLachlan, Klas Modin, and Olivier Verdier, Collective Lie-Poisson integrators on $ \mathbb{R}^3$, IMA J. Numer. Anal. 35 (2015), no. 2, 546-560. MR 3335215, https://doi.org/10.1093/imanum/dru013
  • [27] Robert I. McLachlan, Klas Modin, Olivier Verdier, and Matt Wilkins, Geometric generalisations of SHAKE and RATTLE, Found. Comput. Math. 14 (2014), no. 2, 339-370. MR 3179587, https://doi.org/10.1007/s10208-013-9163-y
  • [28] Robert I. McLachlan and G. Reinout W. Quispel, Geometric integrators for ODEs, J. Phys. A 39 (2006), no. 19, 5251-5285. MR 2220763, https://doi.org/10.1088/0305-4470/39/19/S01
  • [29] Jürgen Moser and Alexander P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys. 139 (1991), no. 2, 217-243. MR 1120138
  • [30] Yoichiro Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412. MR 0455611
  • [31] J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Mathematical Phys. 17 (1976), no. 6, 986-994. MR 0404362
  • [32] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris, transl. in New Methods of Celestial Mechanics, Daniel Goroff, ed. (AIP Press, 1993), 1892.
  • [33] Takashi Sakajo, The motion of three point vortices on a sphere, Japan J. Indust. Appl. Math. 16 (1999), no. 3, 321-347. MR 1719250, https://doi.org/10.1007/BF03167361
  • [34] Zai-jiu Shang, KAM theorem of symplectic algorithms for Hamiltonian systems, Numer. Math. 83 (1999), no. 3, 477-496. MR 1715557, https://doi.org/10.1007/s002110050460
  • [35] Robin Steinigeweg and Heinz-Jürgen Schmidt, Symplectic integrators for classical spin systems, Comput. Phys. Comm. 174 (2006), no. 11, 853-861. MR 2228746, https://doi.org/10.1016/j.cpc.2005.12.023
  • [36] Claude Viterbo, Generating functions, symplectic geometry, and applications, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 537-547. MR 1403954
  • [37] Alan Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 1-13. MR 614310, https://doi.org/10.1090/S0273-0979-1981-14911-9

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 37J15, 37M15, 65P10

Retrieve articles in all journals with MSC (2010): 37J15, 37M15, 65P10


Additional Information

Robert McLachlan
Affiliation: Institute of Fundamental Sciences, Massey University, New Zealand
Email: r.mclachlan@massey.ac.nz

Klas Modin
Affiliation: Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden
Email: klas.modin@chalmers.se

Olivier Verdier
Affiliation: Department of Computing, Mathematics and Physics, Bergen University College, Norway
Email: olivier.verdier@hib.no

DOI: https://doi.org/10.1090/mcom/3153
Received by editor(s): February 12, 2015
Received by editor(s) in revised form: October 11, 2015, and February 22, 2016
Published electronically: November 16, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society