Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes


Authors: Daniele A. Di Pietro and Jérôme Droniou
Journal: Math. Comp. 86 (2017), 2159-2191
MSC (2010): Primary 65N08, 65N30, 65N12
DOI: https://doi.org/10.1090/mcom/3180
Published electronically: December 21, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady nonlinear Leray-Lions problems. The proposed method has several assets, including the support for arbitrary approximation orders and general polytopal meshes. This is achieved by combining two key ingredients devised at the local level: a gradient reconstruction and a high-order stabilization term that generalizes the one originally introduced in the linear case. The convergence analysis is carried out using a compactness technique. Extending this technique to HHO methods has prompted us to develop a set of discrete functional analysis tools whose interest goes beyond the specific problem and method addressed in this work: (direct and) reverse Lebesgue and Sobolev embeddings for local polynomial spaces, $ L^{p}$-stability and $ W^{s,p}$-approximation properties for $ L^{2}$-projectors on such spaces, and Sobolev embeddings for hybrid polynomial spaces. Numerical tests are presented to validate the theoretical results for the original method and variants thereof.


References [Enhancements On Off] (What's this?)

  • [1] Boris Andreianov, Franck Boyer, and Florence Hubert, Finite volume schemes for the $ p$-Laplacian on Cartesian meshes, M2AN Math. Model. Numer. Anal. 38 (2004), no. 6, 931-959. MR 2108939, https://doi.org/10.1051/m2an:2004045
  • [2] Boris Andreianov, Franck Boyer, and Florence Hubert, Besov regularity and new error estimates for finite volume approximations of the $ p$-Laplacian, Numer. Math. 100 (2005), no. 4, 565-592. MR 2194585, https://doi.org/10.1007/s00211-005-0591-8
  • [3] Boris Andreianov, Franck Boyer, and Florence Hubert, On the finite-volume approximation of regular solutions of the $ p$-Laplacian, IMA J. Numer. Anal. 26 (2006), no. 3, 472-502. MR 2241311, https://doi.org/10.1093/imanum/dri047
  • [4] Boris Andreianov, Franck Boyer, and Florence Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differential Equations 23 (2007), no. 1, 145-195. MR 2275464, https://doi.org/10.1002/num.20170
  • [5] Paola F. Antonietti, Nadia Bigoni, and Marco Verani, Mimetic finite difference approximation of quasilinear elliptic problems, Calcolo 52 (2015), no. 1, 45-67. MR 3313588, https://doi.org/10.1007/s10092-014-0107-y
  • [6] Paola F. Antonietti, Stefano Giani, and Paul Houston, $ hp$-version composite discontinuous Galerkin methods for elliptic problems on complicated domains, SIAM J. Sci. Comput. 35 (2013), no. 3, A1417-A1439. MR 3061474, https://doi.org/10.1137/120877246
  • [7] Rodolfo Araya, Christopher Harder, Diego Paredes, and Frédéric Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3505-3531. MR 3143841, https://doi.org/10.1137/120888223
  • [8] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742-760. MR 664882, https://doi.org/10.1137/0719052
  • [9] Randolph E. Bank and Harry Yserentant, On the $ H^1$-stability of the $ L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361-381. MR 3150226, https://doi.org/10.1007/s00211-013-0562-4
  • [10] J. W. Barrett and Wen Bin Liu, Finite element approximation of degenerate quasilinear elliptic and parabolic problems, Numerical analysis 1993 (Dundee, 1993) Pitman Res. Notes Math. Ser., vol. 303, Longman Sci. Tech., Harlow, 1994, pp. 1-16. MR 1267752
  • [11] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys. 231 (2012), no. 1, 45-65. MR 2846986, https://doi.org/10.1016/j.jcp.2011.08.018
  • [12] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199-214. MR 2997471, https://doi.org/10.1142/S0218202512500492
  • [13] L. Beirão da Veiga, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 794-812. MR 3033033, https://doi.org/10.1137/120874746
  • [14] H. Blatter, Velocity and stress fields in grounded glacier: a simple algorithm for including deviator stress gradients, J. Glaciol. 41 (1995), 333-344.
  • [15] Lucio Boccardo, Thierry Gallouët, and François Murat, Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 11, 1159-1164 (French, with English and French summaries). MR 1194509
  • [16] James H. Bramble, Joseph E. Pasciak, and Olaf Steinbach, On the stability of the $ L^2$ projection in $ H^1(\Omega )$, Math. Comp. 71 (2002), no. 237, 147-156 (electronic). MR 1862992, https://doi.org/10.1090/S0025-5718-01-01314-X
  • [17] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $ H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306-324. MR 1974504, https://doi.org/10.1137/S0036142902401311
  • [18] Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954
  • [19] F. Brezzi, Richard S. Falk, and L. Donatella Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227-1240. MR 3264352, https://doi.org/10.1051/m2an/2013138
  • [20] Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15 (2005), no. 10, 1533-1551. MR 2168945, https://doi.org/10.1142/S0218202505000832
  • [21] Annalisa Buffa and Christoph Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal. 29 (2009), no. 4, 827-855. MR 2557047, https://doi.org/10.1093/imanum/drn038
  • [22] Erik Burman and Alexandre Ern, Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian, C. R. Math. Acad. Sci. Paris 346 (2008), no. 17-18, 1013-1016 (English, with English and French summaries). MR 2449647, https://doi.org/10.1016/j.crma.2008.07.005
  • [23] Carsten Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for $ H^1$-stability of the $ L^2$-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157-163 (electronic). MR 1862993, https://doi.org/10.1090/S0025-5718-01-01316-3
  • [24] Juan Casado-Díaz, François Murat, and Alessio Porretta, Uniqueness results for pseudomonotone problems with $ p>2$, C. R. Math. Acad. Sci. Paris 344 (2007), no. 8, 487-492 (English, with English and French summaries). MR 2324483, https://doi.org/10.1016/j.crma.2007.02.007
  • [25] Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676-1706 (electronic). MR 1813251, https://doi.org/10.1137/S0036142900371003
  • [26] Bernardo Cockburn, Daniele A. Di Pietro, and Alexandre Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 635-650. MR 3507267, https://doi.org/10.1051/m2an/2015051
  • [27] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319-1365. MR 2485455, https://doi.org/10.1137/070706616
  • [28] M. Crouzeix and V. Thomée, The stability in $ L_p$ and $ W^1_p$ of the $ L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521-532. MR 878688, https://doi.org/10.2307/2007825
  • [29] Klaus Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. MR 787404
  • [30] Daniele A. Di Pietro, Jérôme Droniou, and Alexandre Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes, SIAM J. Numer. Anal. 53 (2015), no. 5, 2135-2157. MR 3395131, https://doi.org/10.1137/140993971
  • [31] Daniele A. Di Pietro and Alexandre Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79 (2010), no. 271, 1303-1330. MR 2629994, https://doi.org/10.1090/S0025-5718-10-02333-1
  • [32] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69, Springer-Verlag, Berlin, 2012.
  • [33] Daniele A. Di Pietro, Alexandre Ern, and Simon Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math. 14 (2014), no. 4, 461-472. MR 3259024, https://doi.org/10.1515/cmam-2014-0018
  • [34] Daniele A. Di Pietro and Simon Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math. Comp. 84 (2015), no. 291, 1-31. MR 3266951, https://doi.org/10.1090/S0025-5718-2014-02861-5
  • [35] Jesus Ildefonso Diaz and François de Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal. 25 (1994), no. 4, 1085-1111. MR 1278892, https://doi.org/10.1137/S0036141091217731
  • [36] Jérôme Droniou, Finite volume schemes for fully non-linear elliptic equations in divergence form, M2AN Math. Model. Numer. Anal. 40 (2006), no. 6, 1069-1100 (2007). MR 2297105, https://doi.org/10.1051/m2an:2007001
  • [37] Jérôme Droniou and Robert Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math. 105 (2006), no. 1, 35-71. MR 2257385, https://doi.org/10.1007/s00211-006-0034-1
  • [38] Jérôme Droniou and Robert Eymard, Study of the mixed finite volume method for Stokes and Navier-Stokes equations, Numer. Methods Partial Differential Equations 25 (2009), no. 1, 137-171. MR 2473683, https://doi.org/10.1002/num.20333
  • [39] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, The gradient discretisation method: a framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems, preprint, https://hal.archives-ouvertes.fr/hal-01382358, 2016.
  • [40] Jérôme Droniou, Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci. 20 (2010), no. 2, 265-295. MR 2649153, https://doi.org/10.1142/S0218202510004222
  • [41] Jerome Droniou, Robert Eymard, Thierry Gallouet, and Raphaele Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations, Math. Models Methods Appl. Sci. 23 (2013), no. 13, 2395-2432. MR 3109434, https://doi.org/10.1142/S0218202513500358
  • [42] Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441-463. MR 559195, https://doi.org/10.2307/2006095
  • [43] R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), no. 4, 1009-1043. MR 2727814, https://doi.org/10.1093/imanum/drn084
  • [44] Vivette Girault, Béatrice Rivière, and Mary F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp. 74 (2005), no. 249, 53-84. MR 2085402, https://doi.org/10.1090/S0025-5718-04-01652-7
  • [45] Roland Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. MR 737005
  • [46] Roland Glowinski and Jacques Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 175-186. MR 1972657, https://doi.org/10.1051/m2an:2003012
  • [47] Raphaèle Herbin and Florence Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite volumes for complex applications V, ISTE, London, 2008, pp. 659-692. MR 2451465
  • [48] Ohannes A. Karakashian and Wadi N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), no. 1, 93-120. MR 1618436, https://doi.org/10.1137/S0036142996297199
  • [49] A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces, Technical Report 03/10, Oxford University Computing Laboratory, Oxford, England, 2003.
  • [50] Jean Leray and Jacques-Louis Lions, Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107 (French). MR 0194733
  • [51] K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation, J. Comput. Phys. 272 (2014), 360-385. MR 3212277, https://doi.org/10.1016/j.jcp.2014.04.021
  • [52] Wenbin Liu and Ningning Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of $ p$-Laplacian, Numer. Math. 89 (2001), no. 2, 341-378. MR 1855829, https://doi.org/10.1007/PL00005470
  • [53] George J. Minty, on a ``monotonicity'' method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041. MR 0162159
  • [54] Junping Wang and Xiu Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103-115. MR 2994424, https://doi.org/10.1016/j.cam.2012.10.003
  • [55] Junping Wang and Xiu Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp. 83 (2014), no. 289, 2101-2126. MR 3223326, https://doi.org/10.1090/S0025-5718-2014-02852-4

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N08, 65N30, 65N12

Retrieve articles in all journals with MSC (2010): 65N08, 65N30, 65N12


Additional Information

Daniele A. Di Pietro
Affiliation: University of Montpellier, Institut Montpéllierain Alexander Grothendieck, 34095 Montpellier, France
Email: daniele.di-pietro@umontpellier.fr

Jérôme Droniou
Affiliation: School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
Email: jerome.droniou@monash.edu

DOI: https://doi.org/10.1090/mcom/3180
Keywords: Hybrid High-Order methods, nonlinear elliptic equations, $p$-Laplacian, discrete functional analysis, convergence analysis, $W^{s, p}$-approximation properties of $L^2$-projection on polynomials
Received by editor(s): August 8, 2015
Received by editor(s) in revised form: March 23, 2016
Published electronically: December 21, 2016
Additional Notes: This work was partially supported by ANR project HHOMM (ANR-15-CE40-0005).
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society