Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 

 

The semisimple subalgebras of exceptional Lie algebras


Author: A. N. Minchenko
Translated by: E. Khukhro
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 67 (2006).
Journal: Trans. Moscow Math. Soc. 2006, 225-259
MSC (2000): Primary 17B25; Secondary 17B20, 22E10
DOI: https://doi.org/10.1090/S0077-1554-06-00156-7
Published electronically: December 27, 2006
MathSciNet review: 2301595
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Dynkin classified the maximal semisimple subalgebras of exceptional Lie algebras up to conjugacy, but only classified the simple subalgebras up to the coarser relation of linear conjugacy. In the present paper the simple subalgebras of exceptional Lie algebras are classified up to conjugacy, and their normalizers in the group are found. In a certain sense, this completes the description of the semisimple subalgebras of semisimple Lie algebras. As a by-product we obtain a list of all those semisimple subalgebras of exceptional Lie algebras for which the linear conjugacy class does not coincide with their conjugacy class (in the classical case the corresponding result was known).


References [Enhancements On Off] (What's this?)

  • 1. A. V. Alekseevskiĭ, Component groups of centralizers of unipotent elements in semisimple algebraic groups, Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 62 (1979), 5–27 (Russian, with English summary). Collection of articles on algebra, 2. MR 557505
  • 2. È. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488–526, 709 (Russian). MR 0430168
  • 3. È. B. Vinberg and A. L. Onishchik, \cyr Seminar po gruppam Li i algebraicheskim gruppam, 2nd ed., URSS, Moscow, 1995 (Russian, with Russian summary). MR 1403378
    A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110
  • 4. Doan Kuin′, The Poincaré polynomials of compact homogeneous Riemannian spaces with irreducible stationary group, Trudy Sem. Vektor. Tenzor. Anal. 14 (1968), 33–93 (Russian). MR 0274665
  • 5. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
  • 6. V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94–96 (Russian). MR 0251091
  • 7. A. Malcev, On semi-simple subgroups of Lie groups, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 8 (1944), 143–174 (Russian, with English summary). MR 0011303
  • 8. I.V. Losev, On invariants of a set of elements of a semisimple Lie algebra, submitted to J. Lie Theory.
  • 9. Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942, https://doi.org/10.1090/memo/0580
  • 10. J. McKay, J. Patera, and R. T. Sharp, Second and fourth indices of plethysms, J. Math. Phys. 22 (1981), no. 12, 2770–2774. MR 638081, https://doi.org/10.1063/1.525183

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 17B25, 17B20, 22E10

Retrieve articles in all journals with MSC (2000): 17B25, 17B20, 22E10


Additional Information

A. N. Minchenko
Affiliation: Mechanics and Mathematics Department, Moscow State University, Leninskie Gory, Moscow, GSP-2, 119992, Russia
Email: andrei_msu@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-06-00156-7
Keywords: Exceptional Lie algebras, semisimple subalgebra, adjoint group, simple subalgebra, semisimple embedding, simple embedding, conjugacy class, normalizer
Published electronically: December 27, 2006
Article copyright: © Copyright 2006 American Mathematical Society