Asymptotic expansion of eigenelements of the Laplace operator in a domain with a large number of `light' concentrated masses sparsely situated on the boundary. Twodimensional case
Author:
G. A. Chechkin
Translated by:
E. Khukhro
Original publication:
Trudy Moskovskogo Matematicheskogo Obshchestva, tom 70 (2009).
Journal:
Trans. Moscow Math. Soc. 2009, 71134
MSC (2000):
Primary 35J25; Secondary 35B25, 35B27, 35B40
Published electronically:
December 3, 2009
MathSciNet review:
2573638
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper looks at eigenoscillations of a membrane containing a large number of concentrated masses on the boundary. The asymptotic behaviour of the frequencies of eigenoscillations is studied when a small parameter characterizing the diameter and density of the concentrated masses tends to zero. Asymptotic expansions of eigenelements of the corresponding problems are constructed and the expansions are accurately substantiated. The case where the diameter of the masses is much smaller than the distance between them is investigated under the assumption that the limit boundary condition is still a Dirichlet condition.
 1.
A. N. Krylov, Some differential equations of mathematical physics having applications in technical questions, Reports of the Nikolaev Naval Academy, no. 2 (1913), 325348. (Russian)
 2.
E.
SánchezPalencia, Perturbation of eigenvalues in
thermoelasticity and vibration of systems with concentrated masses,
Trends and applications of pure mathematics to mechanics (Palaiseau, 1983),
Lecture Notes in Phys., vol. 195, Springer, Berlin, 1984,
pp. 346–368. MR 755735
(85m:73010), http://dx.doi.org/10.1007/3540129162_66
 3.
O. A. Oleĭnik, Lectures on partial differential equations, Binom, Moscow, 2005. (Russian)
 4.
O.
A. Oleĭnik, The eigenoscillations of bodies with
concentrated mass, Current problems in applied mathematics and in
mathematical physics (Russian), “Nauka”, Moscow, 1988,
pp. 101–128 (Russian). MR 990734
(90c:35020)
 5.
O. A. Oleĭnik, On spectra of some singularly perturbed operators, Uspekhi Mat. Nauk 42, no. 3 (1987), 221222; English transl. Russian Math. Surveys, 42 (1987), 3.
 6.
O.
A. Oleĭnik, Homogenization problems in elasticity. Spectra
of singularly perturbed operators, Nonclassical continuum mechanics
(Durham, 1986) London Math. Soc. Lecture Note Ser., vol. 122,
Cambridge Univ. Press, Cambridge, 1987, pp. 53–95. MR 926498
(89c:73022), http://dx.doi.org/10.1017/CBO9780511662911.005
 7.
O.
A. Oleĭnik, Frequencies of natural oscillations of bodies
with concentrated masses, Functional and numerical methods in
mathematical physics (Russian), “Naukova Dumka”, Kiev, 1988,
pp. 165–171, 271 (Russian). MR 1038572
(91c:35012)
 8.
Yu. D. Golovatyĭ, Spectral properties of oscillatory systems with attached masses, Kandidat Dissertation, Moskov. Univ., 1988. (Russian)
 9.
Yu.
D. Golovatyĭ, S.
A. Nazarov, O.
A. Oleĭnik, and T.
S. Soboleva, Natural oscillations of a string with an additional
mass, Sibirsk. Mat. Zh. 29 (1988), no. 5,
71–91, 237 (Russian); English transl., Siberian Math. J.
29 (1988), no. 5, 744–760 (1989). MR 971229
(90e:34044), http://dx.doi.org/10.1007/BF00970268
 10.
O. A. Oleĭnik and T. S. Soboleva, On eigenoscillations of a nonhomogeneous string with a finite number of attached masses, Uspekhi Mat. Nauk 43, no. 4 (1988), 187188; English transl. in Russian Math. Surveys, 43, no. 4 (1988).
 11.
Yu. D. Golovatyĭ, On eigenoscillations and eigenfrequencies of an elastic rod with an attached mass, Uspekhi Mat. Nauk 43, no. 4 (1988), 163192; English transl. Russian Math. Surveys, 43, no. 4.
 12.
Yu.
D. Golovatyĭ, Natural frequencies of a fastened plate with
additional mass, Uspekhi Mat. Nauk 43 (1988),
no. 5(263), 185–186 (Russian); English transl., Russian Math.
Surveys 43 (1988), no. 5, 227–228. MR 971476
(90b:35027), http://dx.doi.org/10.1070/RM1988v043n05ABEH001917
 13.
Serguei
A. Nazarov, Concentrated masses problems for a spatial elastic
body, C. R. Acad. Sci. Paris Sér. I Math. 316
(1993), no. 6, 627–632 (English, with English and French
summaries). MR
1212218 (94b:73017)
 14.
Ivan
I. Argatov and Serguei
A. Nazarov, Junction problem of shashlik (skewer) type, C. R.
Acad. Sci. Paris Sér. I Math. 316 (1993),
no. 12, 1329–1334 (English, with English and French summaries).
MR
1226125 (94e:35051)
 15.
Yu.
D. Golovatyĭ, Spectral properties of oscillatory systems
with added masses, Trudy Moskov. Mat. Obshch. 54
(1992), 29–72, 278 (Russian, with Russian summary); English transl.,
Trans. Moscow Math. Soc. (1993), 23–59. MR 1256922
(95b:73012)
 16.
Yu.
D. Golovatyĭ, The spectral Neumann problem for the Laplace
operator with singularly perturbed density, Uspekhi Mat. Nauk
45 (1990), no. 4(274), 147–148 (Russian);
English transl., Russian Math. Surveys 45 (1990),
no. 4, 165–167. MR 1075393
(92g:35162), http://dx.doi.org/10.1070/RM1990v045n04ABEH002372
 17.
S.
A. Nazarov, On a problem of SánchezPalencia with Neumann
boundary conditions, Izv. Vyssh. Uchebn. Zaved. Mat.
11 (1989), 60–66 (Russian); English transl., Soviet
Math. (Iz. VUZ) 33 (1989), no. 11, 73–78. MR 1045104
(91k:35187)
 18.
N. U. Rakhmanov, On eigenoscillations of systems with concentrated masses, Kandidat Dissertation, Moskov. Univ., 1991. (Russian)
 19.
O.
A. Oleĭnik, G.
A. Iosif′yan, and A.
S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh
uprugikh sred, Moskov. Gos. Univ., Moscow, 1990 (Russian). MR 1115306
(92i:73009)
 20.
Yu.
D. Golovatyĭ, S.
A. Nazarov, and O.
A. Oleĭnik, Asymptotic behavior of eigenvalues and
eigenfunctions in problems on oscillations of a medium with singular
perturbation of the density, Uspekhi Mat. Nauk 43
(1988), no. 5(263), 189–190 (Russian); English transl., Russian
Math. Surveys 43 (1988), no. 5, 229–230. MR 971478
(89k:35172), http://dx.doi.org/10.1070/RM1988v043n05ABEH001922
 21.
Yu.
D. Golovatyĭ, S.
A. Nazarov, and O.
A. Oleĭnik, Asymptotic expansions of eigenvalues and
eigenfunctions of problems on oscillations of a medium with concentrated
perturbations, Trudy Mat. Inst. Steklov. 192 (1990),
42–60 (Russian). Translated in Proc.\ Steklov Inst.\ Math.\ {1992},
no.\ 3, 43–63; Differential equations and function spaces (Russian).
MR
1097888 (92b:35113)
 22.
E.
SánchezPalencia and H.
Tchatat, Vibration de systèmes élastiques avec des
masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino
42 (1984), no. 3, 43–63 (French). MR 834781
(87i:73039)
 23.
Y.
D. Golovaty and A.
S. Lavrenyuk, Asymptotic expansions of local eigenvibrations for
plate with density perturbed in neighbourhood of onedimensional
manifold, Mat. Stud. 13 (2000), no. 1,
51–62 (English, with English and Russian summaries). MR 1777323
(2001k:74053)
 24.
C.
Leal and J.
SanchezHubert, Perturbation of the eigenvalues of a membrane with
a concentrated mass, Quart. Appl. Math. 47 (1989),
no. 1, 93–103 (English, with French summary). MR 987898
(90c:73077)
 25.
M. Lobo and E. Pérez Asymptotic behavior of the vibrations of a body having many concentrated masses near the boundary, C. R. Acad. Sci. Paris Sér. II 314 (1992), 1318.
 26.
Miguel
Lobo and Eugenia
Pérez, On vibrations of a body with many concentrated masses
near the boundary, Math. Models Methods Appl. Sci. 3
(1993), no. 2, 249–273. MR 1212942
(94h:73034), http://dx.doi.org/10.1142/S021820259300014X
 27.
M.
Lobo and E.
Pérez, Vibrations of a body with many concentrated masses
near the boundary: high frequency vibrations, Spectral analysis of
complex structures (Paris, 1993) Travaux en Cours, vol. 49, Hermann,
Paris, 1995, pp. 85–101. MR 1488737
(98j:73037)
 28.
Miguel
Lobo and Eugenia
Pérez, Vibrations of a membrane with many concentrated
masses near the boundary, Math. Models Methods Appl. Sci.
5 (1995), no. 5, 565–585. MR 1347148
(96g:73025), http://dx.doi.org/10.1142/S0218202595000334
 29.
Miguel
Lobo and Eugenia
Pérez, High frequency vibrations in a stiff problem,
Math. Models Methods Appl. Sci. 7 (1997), no. 2,
291–311. MR 1440610
(98e:35053), http://dx.doi.org/10.1142/S0218202597000177
 30.
M. Lobo and E. Pérez A skin effect for systems with many concentrated masses, C. R. Acad. Sci. Paris Sér. IIb 327 (1999), 771776.
 31.
D.
Gómez, M.
Lobo, and E.
Pérez, On the eigenfunctions associated with the high
frequencies in systems with a concentrated mass, J. Math. Pures Appl.
(9) 78 (1999), no. 8, 841–865. MR 1715344
(2000h:35119), http://dx.doi.org/10.1016/S00217824(99)000094
 32.
M.
Lobo and E.
Pérez, The skin effect in vibrating systems with many
concentrated masses, Math. Methods Appl. Sci. 24
(2001), no. 1, 59–80. MR 1809494
(2001m:35029), http://dx.doi.org/10.1002/10991476(20010110)24:1<59::AIDMMA194>3.0.CO;24
 33.
O.
A. Oleĭnik, J.
SanchezHubert, and G.
A. Yosifian, On vibrations of a membrane with concentrated
masses, Bull. Sci. Math. 115 (1991), no. 1,
1–27 (English, with French summary). MR 1086936
(92a:73021)
 34.
J.
Sanchez Hubert and E.
SánchezPalencia, Vibration and coupling of continuous
systems, SpringerVerlag, Berlin, 1989. Asymptotic methods. MR 996423
(91c:00018)
 35.
Jacqueline
SanchezHubert, Perturbation des valeurs propres pour des
systèmes avec masse concentrée, C. R. Acad. Sci. Paris
Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre
309 (1989), no. 6, 507–510 (French, with
English summary). MR 1022289
(90j:35151)
 36.
N. O. Babich and Yu. D. Golovatiĭ, On the Neumann spectral problem for a singular perturbed differential operator of the fourth order, Visn. L'viv. Univ. Ser. Mekh.Mat. 51 (1998), 118127. (Ukrainian)
 37.
N.
O. Babich, Highfrequency asymptotics of global vibrations in the
problem with a locally perturbed density, Mat. Metodi Fiz.Mekh. Polya
42 (1999), no. 3, 36–44 (Ukrainian, with
English, Russian and Ukrainian summaries). MR 1977858
(2003m:74095)
 38.
Yu. D. Golovatiĭ and A. Golovach, On the asymptotics of global eigenoscillations of a strongly nonhomogeneous string, Visn. L'viv Univ. Ser. Mekh.Mat. 48 (1997), 8899. (Ukrainian)
 39.
Yu. D. Golovatiĭ and V. M. Flyud, On interaction of local and global oscillations of a strongly nonhomogeneous string, Proc. Int. Sci. Conf. ``Current problems of mathematics'', ChernavtsiKiev, 1998, part 1, pp. 138141. (Ukrainian)
 40.
G. Grabchak, The spectral Neumann problem for a system of equations in the linear theory of elasticity with a singular density distribution, Visn. L'viv Univ. Ser. Mekh.Mat. 45 (1996), 124140. (Ukrainian)
 41.
Yu. D. Golovatyj, On WKBapproximation of high frequency vibrations of a singular perturbed string, Proc. Int. Conf. ``Nonlinear partial differential equations'', Kiev, 1997, p. 62.
 42.
Taras
A. Mel′nyk, Vibrations of a thick periodic junction with
concentrated masses, Math. Models Methods Appl. Sci.
11 (2001), no. 6, 1001–1027. MR 1850560
(2002f:35024), http://dx.doi.org/10.1142/S0218202501001215
 43.
T.
A. Mel′nyk, Vibrations and pseudovibrations of thick periodic
junctions with concentrated masses, Dopov. Nats. Akad. Nauk Ukr. Mat.
Prirodozn. Tekh. Nauki 9 (2001), 47–53 (English,
with Ukrainian summary). MR 1886107
(2002i:35021)
 44.
E.
I. Doronina and G.
A. Chechkin, On natural oscillations of a body with many
concentrated masses located nonperiodically along the boundary, Tr.
Mat. Inst. Steklova 236 (2002), no. Differ. Uravn. i
Din. Sist., 158–166 (Russian, with Russian summary); English transl.,
Proc. Steklov Inst. Math. 1 (236) (2002), 148–156.
MR
1931016 (2003d:74034)
 45.
Volodymyr
Rybalko, Vibrations of elastic systems with a large number of tiny
heavy inclusions, Asymptot. Anal. 32 (2002),
no. 1, 27–62. MR 1943039
(2004a:74029)
 46.
Gregory
A. Chechkin, M.
Eugenia Pérez, and Ekaterina
I. Yablokova, Nonperiodic boundary homogenization and
“light” concentrated masses, Indiana Univ. Math. J.
54 (2005), no. 2, 321–348. MR 2136812
(2006a:35013), http://dx.doi.org/10.1512/iumj.2005.54.2487
 47.
G.
A. Chechkin, On the estimation of solutions of boundary value
problems in domains with concentrated masses periodically distributed along
the boundary. The case of “light” masses, Mat. Zametki
76 (2004), no. 6, 928–944 (Russian, with
Russian summary); English transl., Math. Notes 76 (2004),
no. 56, 865–879. MR 2127504
(2005m:35015), http://dx.doi.org/10.1023/B:MATN.0000049687.89273.d9
 48.
G. A. Chechkin, On oscillations of a body with concentrated masses situated on the boundary, Uspekhi Mat. Nauk 50, no. 4 (1995), 105106; English transl. in Russian Math. Surveys 50 (1995), 763764.
 49.
G. A. Chechkin, On the vibration of a partially fastened membrane with many 'light' concentrated masses on the boundary, C. R. Mécanique 332 (2004), 949954.
 50.
G.
A. Chechkin, The splitting of a multiple eigenvalue in the problem
of concentrated masses, Uspekhi Mat. Nauk 59 (2004),
no. 4(358), 205–206 (Russian); English transl., Russian Math.
Surveys 59 (2004), no. 4, 790–791. MR
2106656, http://dx.doi.org/10.1070/RM2004v059n04ABEH000769
 51.
G.
A. Chechkin, Asymptotic expansions of the eigenvalues and
eigenfunctions of an elliptic operator in a domain with many
“light” concentrated masses near the boundary. The
twodimensional case, Izv. Ross. Akad. Nauk Ser. Mat.
69 (2005), no. 4, 161–204 (Russian, with
Russian summary); English transl., Izv. Math. 69 (2005),
no. 4, 805–846. MR 2170707
(2006h:35006), http://dx.doi.org/10.1070/IM2005v069n04ABEH001665
 52.
G.
A. Chechkin, Asymptotic expansions of eigenelements of the Laplace
operator in a domain with many “light” concentrated masses
closely located on the boundary. Multidimensional case, J. Math. Sci.
(N. Y.) 128 (2005), no. 5, 3263–3305. Problems
in mathematical analysis. No. 30. MR 2171602
(2006m:35056), http://dx.doi.org/10.1007/s109580050268y
 53.
G. A. Chechkin, Boundary homogenization in domains with singular density, Differentsial'nye Uravneniya 39 (2003), 855; English transl. in Differential Equations, 39(2003), 904.
 54.
G.
A. Chechkin, Homogenization of solutions to problems for the
Laplace operator in unbounded domains with many concentrated masses on the
boundary, J. Math. Sci. (N. Y.) 139 (2006),
no. 1, 6351–6362. Problems in mathematical analysis. No. 33. MR 2278909
(2007k:35019), http://dx.doi.org/10.1007/s109580060352y
 55.
A.
M. Il′in, Soglasovanie asimptoticheskikh razlozhenii reshenii
kraevykh zadach, “Nauka”, Moscow, 1989 (Russian). With an
English summary. MR 1007834
(90i:35062)
 56.
R.
R. Gadyl′shin, Asymptotics of the eigenvalues of a boundary
value problem with rapidly oscillating boundary conditions, Differ.
Uravn. 35 (1999), no. 4, 540–551, 575 (Russian,
with Russian summary); English transl., Differential Equations
35 (1999), no. 4, 540–551. MR 1719780
(2000j:35212)
 57.
G.
A. Chechkin, Averaging of boundary value problems with singular
perturbation of the boundary conditions, Mat. Sb. 184
(1993), no. 6, 99–150 (Russian, with Russian summary); English
transl., Russian Acad. Sci. Sb. Math. 79 (1994),
no. 1, 191–222. MR 1234592
(94j:35014), http://dx.doi.org/10.1070/SM1994v079n01ABEH003608
 58.
D.
I. Borisov, On a boundary value problem in a cylinder with a
partial change of type of boundary conditions, Mat. Sb.
193 (2002), no. 7, 37–68 (Russian, with Russian
summary); English transl., Sb. Math. 193 (2002),
no. 78, 977–1008. MR 1936849
(2003i:35211), http://dx.doi.org/10.1070/SM2002v193n07ABEH000666
 59.
S.
L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v
matematicheskoi fizike, 3rd ed., “Nauka”, Moscow, 1988
(Russian). MR
986735 (90m:46059)
 60.
S.
L. Sobolev, Izbrannye voprosy teorii funktsionalnykh prostranstv i
obobshchennykh funktsii, “Nauka”, Moscow, 1989 (Russian).
With an English summary; Edited and with a preface by S. V.
Uspenskiĭ. MR 993984
(90m:46060)
 61.
O.
A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki,
Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0599579
(58 #29032)
 62.
V. P. Mikhaĭlov, Partial differential equations, Nauka, Moscow, 1983; English transl., Mir, Moscow, 1978.
 63.
R.
R. Gadyl′shin, Asymptotics of the eigenvalue of a singularly
perturbed selfadjoint elliptic problem with a small parameter in the
boundary conditions, Differentsial′nye Uravneniya
22 (1986), no. 4, 640–652, 732 (Russian). MR 843222
(87m:35167)
 64.
R.
R. Gadyl′shin, Splitting of a multiple eigenvalue of the
Dirichlet problem for the Laplace operator under singular perturbation of
the boundary condition, Mat. Zametki 52 (1992),
no. 4, 42–55 (Russian); English transl., Math. Notes
52 (1992), no. 34, 1020–1029 (1993). MR 1203951
(94c:35132), http://dx.doi.org/10.1007/BF01210435
 65.
Denis
I. Borisov, On a model boundary value problem for Laplacian with
frequently alternating type of boundary condition, Asymptot. Anal.
35 (2003), no. 1, 1–26. MR 2004716
(2005g:35009)
 66.
M.
Yu. Planida, On the convergence of solutions of singularly
perturbed boundary value problems for the Laplacian, Mat. Zametki
71 (2002), no. 6, 867–877 (Russian, with
Russian summary); English transl., Math. Notes 71 (2002),
no. 56, 794–803. MR 1933107
(2003g:35006), http://dx.doi.org/10.1023/A:1015820928854
 67.
M.
Yu. Planida, Asymptotics of eigenvalues for a cylinder that is
heatinsulated on a narrow strip, Zh. Vychisl. Mat. Mat. Fiz.
43 (2003), no. 3, 422–432 (Russian, with
Russian summary); English transl., Comput. Math. Math. Phys.
43 (2003), no. 3, 403–413. MR 1994401
(2004e:35171)
 68.
A.
M. Il′in, A boundary value problem for an elliptic equation
of second order in a domain with a narrow slit. I. The twodimensional
case, Mat. Sb. (N.S.) 99(141) (1976), no. 4,
514–537 (Russian). MR 0407439
(53 #11214)
 69.
A.
M. Il′in, A boundary value problem for an elliptic equation
of second order in a domain with a narrow slit. II. Domain with a small
opening, Mat. Sb. (N.S.) 103(145) (1977), no. 2,
265–284 (Russian). MR 0442460
(56 #842)
 70.
A.
M. Il′in, Study of the asymptotic behavior of the solution of
an elliptic boundary value problem in a domain with a small hole,
Trudy Sem. Petrovsk. 6 (1981), 57–82 (Russian, with
English summary). MR 630701
(83e:35045)
 71.
Rustem
R. Gadyl′shin, Asymptotics of the minimum eigenvalue for a
circle with fast oscillating boundary conditions, C. R. Acad. Sci.
Paris Sér. I Math. 323 (1996), no. 3,
319–323 (English, with English and French summaries). MR 1404781
(97f:35158)
 72.
R.
R. Gadyl′shin, A boundary value problem for the Laplacian
with rapidly oscillating boundary conditions, Dokl. Akad. Nauk
362 (1998), no. 4, 456–459 (Russian). MR 1708976
(2000g:35034)
 73.
R.
R. Gadyl′shin, The splitting of a multiple eigenvalue in a
boundary value problem for a membrane clamped to a small section of the
boundary, Sibirsk. Mat. Zh. 34 (1993), no. 3,
43–61, 221, 226 (Russian, with English and Russian summaries);
English transl., Siberian Math. J. 34 (1993), no. 3,
433–450. MR 1241167
(94k:35219), http://dx.doi.org/10.1007/BF00971218
 74.
Sergey
A. Nazarov and Boris
A. Plamenevsky, Elliptic problems in domains with piecewise smooth
boundaries, de Gruyter Expositions in Mathematics, vol. 13,
Walter de Gruyter & Co., Berlin, 1994. MR 1283387
(95h:35001)
 75.
M.
A. Lavrent′ev and B.
V. Shabat, Metody teorii funktsii kompleksnogo peremennogo,
5th ed., “Nauka”, Moscow, 1987 (Russian). MR 1087298
(91k:30003)
 1.
 A. N. Krylov, Some differential equations of mathematical physics having applications in technical questions, Reports of the Nikolaev Naval Academy, no. 2 (1913), 325348. (Russian)
 2.
 E. SánchezPalencia, Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., vol. 195, SpringerVerlag, Berlin, 1984, pp. 346368. MR 755735 (85m:73010)
 3.
 O. A. Oleĭnik, Lectures on partial differential equations, Binom, Moscow, 2005. (Russian)
 4.
 O. A. Oleĭnik, On the eigenoscillations of bodies with concentrated masses, Current problems of applied mathematics and mathematical physics, Nauka, Moscow, 1988, pp. 101128. (Russian) MR 990734 (90c:35020)
 5.
 O. A. Oleĭnik, On spectra of some singularly perturbed operators, Uspekhi Mat. Nauk 42, no. 3 (1987), 221222; English transl. Russian Math. Surveys, 42 (1987), 3.
 6.
 O. A. Oleĭnik, Homogenization problems in elasticity. Spectra of singularly perturbed operators, Nonclassical continuum mechanics (Durham, 1986), London Math. Soc. Lecture Note Ser. vol. 122, Cambridge Univ. Press, Cambridge, 1987, pp. 5395. MR 926498 (89c:73022)
 7.
 O. A. Oleĭnik, On frequencies of eigenoscillations of bodies with concentrated masses, Functional and numerical methods in mathematical physics, Naukova Dumka, Kiev, 1988, pp. 165171. (Russian) MR 1038572 (91c:35012)
 8.
 Yu. D. Golovatyĭ, Spectral properties of oscillatory systems with attached masses, Kandidat Dissertation, Moskov. Univ., 1988. (Russian)
 9.
 Yu. D. Golovatyĭ, S. A. Nazarov, O. A. Oleĭnik, and T. S. Soboleva, On eigenoscillations of a string with an attached mass, Sibirsk. Mat. Zh. 29, no. 5 (1988), 7191; English transl. in Siberian Math. J. 29 (1989), 744760. MR 971229 (90e:34044)
 10.
 O. A. Oleĭnik and T. S. Soboleva, On eigenoscillations of a nonhomogeneous string with a finite number of attached masses, Uspekhi Mat. Nauk 43, no. 4 (1988), 187188; English transl. in Russian Math. Surveys, 43, no. 4 (1988).
 11.
 Yu. D. Golovatyĭ, On eigenoscillations and eigenfrequencies of an elastic rod with an attached mass, Uspekhi Mat. Nauk 43, no. 4 (1988), 163192; English transl. Russian Math. Surveys, 43, no. 4.
 12.
 Yu. D. Golovatyĭ, On eigenoscillations and eigenfrequencies of a clamped plate with an attached mass, Uspekhi Mat. Nauk 43, no. 5 (1988), 185186; English transl. in Russian Math. Surveys 43, no. 5 (1988), 227228. MR 971476 (90b:35027)
 13.
 S. A. Nazarov, Concentrated masses problems for a spatial elastic body, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 627632. MR 1212218 (94b:73017)
 14.
 I. I. Argatov and S. A. Nazarov, Junction problem of shashlik (skewer) type, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 13291334. MR 1226125 (94e:35051)
 15.
 Yu. D. Golovatyĭ, Spectral properties of oscillatory systems with attached masses, Trudy Moskov. Mat. Obshch. 54 (1992), 2972; English transl. in Trans. Moscow Math. Soc. 1993 (1993), 2359. MR 1256922 (95b:73012)
 16.
 Yu. D. Golovatyĭ, The spectral Neumann problem for the Laplace operator with singularly perturbed density, Uspekhi Mat. Nauk 45, no. 4 (1990), 147148; English transl. in Russian Math. Surveys 45, no. 4 (1990), 165167. MR 1075393 (92g:35162)
 17.
 S. A. Nazarov, On a problem of SánchezPalencia with Neumann boundary conditions, Izv. Vyssh. Uchebn. Zaved. Mat. 1989, no. 11 (1989), 6066; English transl. in Soviet Math. (Iz. VUZ) 33, no. 11 (1989), 7378. MR 1045104 (91k:35187)
 18.
 N. U. Rakhmanov, On eigenoscillations of systems with concentrated masses, Kandidat Dissertation, Moskov. Univ., 1991. (Russian)
 19.
 O. A. Oleĭnik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical problems in the theory of strongly inhomogeneous elastic media, Moscow Univ., Moscow, 1990. English translation, Mathematical problems in elasticity and homogenization, Elsevier, Amsterdam, 1992. MR 1115306 (92i:73009)
 20.
 Yu. D. Golovatyĭ, S. A. Nazarov, and O. A. Oleĭnik, Asymptotic behavior of eigenvalues and eigenfunctions in problems on oscillations of a medium with singular perturbation of the density, Uspekhi Mat. Nauk 43, no. 5 (1988), 189190; English transl. in Russian Math. Surveys 43, no. 5 (1988), 229230. MR 971478 (89k:35172)
 21.
 Yu. D. Golovatyĭ, S. A. Nazarov, and O. A. Oleĭnik, Asymptotic expansions of eigenvalues and eigenfunctions of problems on oscillations of a medium with concentrated perturbations, Trudy Mat. Inst. Steklov. 192 (1990), 4260; English transl. in Proc. Steklov Inst. Math. 1992, no. 3 (1993), 4363. MR 1097888 (92b:35113)
 22.
 E. SánchezPalencia and H. Tchatat, Vibration de systèmes élastiques avec des masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino 42, no. 3 (1984), 4363. MR 834781 (87i:73039)
 23.
 Y. D. Golovaty and A. S. Lavrenyuk, Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of onedimensional manifold, Mat. Stud. 13 (2000), 5162. MR 1777323 (2001k:74053)
 24.
 C. Leal and J. SanchezHubert, Perturbation of the eigenvalues of a membrane with a concentrated mass, Quart. Appl. Math. 47 (1989), 93103. MR 987898 (90c:73077)
 25.
 M. Lobo and E. Pérez Asymptotic behavior of the vibrations of a body having many concentrated masses near the boundary, C. R. Acad. Sci. Paris Sér. II 314 (1992), 1318.
 26.
 M. Lobo and E. Pérez, On vibrations of a body with many concentrated masses near the boundary, Math. Models Methods Appl. Sci. 3 (1993), 249273. MR 1212942 (94h:73034)
 27.
 M. Lobo and E. Pérez, Vibrations of a body with many concentrated masses near the boundary: High frequency vibrations, Spectral analysis of complex structures (Paris, 1993), Travaux en Cours vol. 49, Hermann, Paris, 1995, pp. 85101. MR 1488737 (98j:73037)
 28.
 M. Lobo and E. Pérez, Vibrations of a membrane with many concentrated masses near the boundary, Math. Models Methods Appl. Sci. 5 (1995), 565585. MR 1347148 (96g:73025)
 29.
 M. Lobo and E. Pérez, High frequency vibrations in a stiff problem, Math. Models Methods Appl. Sci. 7 (1997), 291311. MR 1440610 (98e:35053)
 30.
 M. Lobo and E. Pérez A skin effect for systems with many concentrated masses, C. R. Acad. Sci. Paris Sér. IIb 327 (1999), 771776.
 31.
 D. Gómez, M. Lobo, and E. Pérez, On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl. (9) 78 (1999), 841865. MR 1715344 (2000h:35119)
 32.
 M. Lobo and E. Pérez, The skin effect in vibrating systems with many concentrated masses, Math. Methods Appl. Sci. 24 (2001), 5980. MR 1809494 (2001m:35029)
 33.
 O. A. Oleinik, J. SanchezHubert, and G. A. Yosifian, On vibrations of a membrane with concentrated masses, Bull. Sci. Math. 115 (1991), 127. MR 1086936 (92a:73021)
 34.
 J. SanchezHubert and E. SánchezPalencia, Vibration and coupling of continuous systems. Asymptotic methods, SpringerVerlag, Berlin, 1989. MR 996423 (91c:00018)
 35.
 J. SanchezHubert, Perturbation des valeurs propres pour des systèmes avec masse concentrée, C. R. Acad. Sci. Paris Sér. II 309 (1989), 507510. MR 1022289 (90j:35151)
 36.
 N. O. Babich and Yu. D. Golovatiĭ, On the Neumann spectral problem for a singular perturbed differential operator of the fourth order, Visn. L'viv. Univ. Ser. Mekh.Mat. 51 (1998), 118127. (Ukrainian)
 37.
 N. O. Babich, Highfrequency asymptotics of global vibrations in a problem with a locally perturbed density, Mat. Metodi Fiz.Mekh. Polya 42, no. 3 (1999), 3644. (Ukrainian) MR 1977858 (2003m:74095)
 38.
 Yu. D. Golovatiĭ and A. Golovach, On the asymptotics of global eigenoscillations of a strongly nonhomogeneous string, Visn. L'viv Univ. Ser. Mekh.Mat. 48 (1997), 8899. (Ukrainian)
 39.
 Yu. D. Golovatiĭ and V. M. Flyud, On interaction of local and global oscillations of a strongly nonhomogeneous string, Proc. Int. Sci. Conf. ``Current problems of mathematics'', ChernavtsiKiev, 1998, part 1, pp. 138141. (Ukrainian)
 40.
 G. Grabchak, The spectral Neumann problem for a system of equations in the linear theory of elasticity with a singular density distribution, Visn. L'viv Univ. Ser. Mekh.Mat. 45 (1996), 124140. (Ukrainian)
 41.
 Yu. D. Golovatyj, On WKBapproximation of high frequency vibrations of a singular perturbed string, Proc. Int. Conf. ``Nonlinear partial differential equations'', Kiev, 1997, p. 62.
 42.
 T. A. Mel'nyk, Vibrations of a thick periodic junction with concentrated masses, Math. Models Methods Appl. Sci. 11 (2001), 10011027. MR 1850560 (2002f:35024)
 43.
 T. A. Mel'nyk, Vibrations and pseudovibrations of thick periodic junctions with concentrated masses, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2001, no. 9 (2001), 4753. MR 1886107 (2002i:35021)
 44.
 E. I. Doronina and G. A. Chechkin, On eigenoscillations of a body with many concentrated masses located nonperiodically along the boundary, Trudy Mat. Inst. Steklova 236 (2002), 158166; English transl. in Proc. Steklov Inst. Math. 2002, no. 1 (2002), 148156 MR 1931016 (2003d:74034)
 45.
 V Rybalko, Vibrations of elastic systems with a large number of tiny heavy inclusions, Asymptot. Anal. 32 (2002), 2762. MR 1943039 (2004a:74029)
 46.
 G. A. Chechkin, E. Pérez and E. I. Yablokova, Nonperiodic boundary homogenization and ``light'' concentrated masses, Indiana Univ. Math. J. 54 (2005), 321348. MR 2136812 (2006a:35013)
 47.
 G. A. Chechkin, On the estimation of solutions of boundary value problems in domains with concentrated masses periodically distributed along the boundary. The case of ``light'' masses, Mat. Zametki 76 (2004), 928944; English transl. in Math. Notes 76 (2004), 865879. MR 2127504 (2005m:35015)
 48.
 G. A. Chechkin, On oscillations of a body with concentrated masses situated on the boundary, Uspekhi Mat. Nauk 50, no. 4 (1995), 105106; English transl. in Russian Math. Surveys 50 (1995), 763764.
 49.
 G. A. Chechkin, On the vibration of a partially fastened membrane with many 'light' concentrated masses on the boundary, C. R. Mécanique 332 (2004), 949954.
 50.
 G. A. Chechkin, The splitting of a multiple eigenvalue in the problem of concentrated masses, Uspekhi Mat. Nauk 59, no. 4 (2004), 205206; English transl. in Russian Math. Surveys 59, no. 4 (2004), 790791. MR 2106656
 51.
 G. A. Chechkin, Asymptotic expansions of the eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses near the boundary. The twodimensional case, Izv. Ross. Akad. Nauk Ser. Mat. 69, no. 4 (2005), 161204; English transl. in Izv. Math. 69, no. 4 (2005), 805846. MR 2170707 (2006h:35006)
 52.
 G. A. Chechkin, Asymptotic expansions of eigenelements of the Laplace operator in a domain with many ``light'' concentrated masses closely located on the boundary. Multidimensional case, Probl. Mat. Analiz. 30 (2005), 87119; English transl. in J. Math. Sci. (N. Y.) 128 (2005), 32633305. MR 2171602 (2006m:35056)
 53.
 G. A. Chechkin, Boundary homogenization in domains with singular density, Differentsial'nye Uravneniya 39 (2003), 855; English transl. in Differential Equations, 39(2003), 904.
 54.
 G. A. Chechkin, Homogenization of solutions to problems for the Laplace operator in unbounded domains with many concentrated masses on the boundary, Problems in mathematical analysis, 33 (2006), 103111; English transl. in Math. Sci. (N. Y.) 139 (2006), 63516362. MR 2278909 (2007k:35019)
 55.
 A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989; English transl., Transl. Math. Monographs vol. 102, Amer. Math. Soc., Providence, RI, 1992. MR 1007834 (90i:35062)
 56.
 R. R. Gadyl'shin, Asymptotics of the eigenvalues of a boundary value problem with rapidly oscillating boundary conditions, Differentsial'nye Uravneniya 35 (1999), 540551; English transl. in Differential Equations 35 (1999), 540551. MR 1719780 (2000j:35212)
 57.
 G. A. Chechkin, Averaging of boundary value problems with singular perturbation of the boundary conditions, Mat. Sb. 184, no. 6 (1993), 99150; English transl. in Russian Acad. Sci. Sb. Math. 79 (1994), 191222. MR 1234592 (94j:35014)
 58.
 D. I. Borisov, On a boundary value problem in a cylinder with a partial change of type of boundary conditions, Mat. Sb. 193, no. 7 (2002), 3768; English transl. in Sb. Math. 193 (2002), 9771008. MR 1936849 (2003i:35211)
 59.
 S. L. Sobolev, Some applications of functional analysis in mathematical physics, Nauka, Moscow, 1988; English transl., Transl. Math. Monographs vol. 90, Amer. Math. Soc., Providence, RI, 1991. MR 986735 (90m:46059)
 60.
 S. L. Sobolev, Selected problems in the theory of function spaces and generalized functions, Nauka, Moscow, 1989. (Russian) MR 993984 (90m:46060)
 61.
 O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Nauka, Moscow, 1973; English transl., Applied Mathematical Sciences vol. 49, SpringerVerlag, New York, 1985. MR 0599579 (58:29032)
 62.
 V. P. Mikhaĭlov, Partial differential equations, Nauka, Moscow, 1983; English transl., Mir, Moscow, 1978.
 63.
 R. R. Gadyl'shin, Asymptotics of the eigenvalue of a singularly perturbed selfadjoint elliptic problem with a small parameter in the boundary conditions, Differentsial'nye Uravneniya 22 (1986), 640652; English transl. in Differ. Equations 22 (1986), 474483. MR 843222 (87m:35167)
 64.
 R. R. Gadyl'shin, Splitting of a multiple eigenvalue of the Dirichlet problem for the Laplace operator under singular perturbation of the boundary condition, Mat. Zametki 52, no. 4 (1992), 4255; English transl. in Math. Notes 52 (1993), 10201029. MR 1203951 (94c:35132)
 65.
 D. I. Borisov, On a model boundary value problem for Laplacian with frequently alternating type of boundary condition, Asymptot. Anal. 35 (2003), 126. MR 2004716 (2005g:35009)
 66.
 M. Yu. Planida, On the convergence of solutions of singularly perturbed boundary value problems for the Laplacian, Mat. Zametki 71 (2002), 867877; English transl. in Math. Notes 71 (2002), 794803. MR 1933107 (2003g:35006)
 67.
 M. Yu. Planida, Asymptotics of eigenvalues for a cylinder that is heatinsulated on a narrow strip, Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), 422432; English transl. in Comput. Math. Math. Phys. 43 (2003), 403413. MR 1994401 (2004e:35171)
 68.
 A. M. Il'in, A boundary value problem for an elliptic equation of second order in a domain with a narrow slit. I. The twodimensional case, Mat. Sb. 99 (1976), 514537; English transl. in Math. USSRSb. 28 (1976), 459480. MR 0407439 (53:11214)
 69.
 A. M. Il'in, A boundary value problem for an elliptic equation of second order in a domain with a narrow slit. II. Domain with a small cavity, Mat. Sb. 103 (1977), 265284; English transl. in Math. USSRSb. 32 (1977), 227244. MR 0442460 (56:842)
 70.
 A. M. Il'in, Study of the asymptotic behavior of the solution of an elliptic boundary value problem in a domain with a small hole, Trudy Sem. Petrovsk. 6 (1981), 5782; English transl. in J. Soviet Math. 33 (1986), 9941014. MR 630701 (83e:35045)
 71.
 R. R. Gadyl'shin, Asymptotics of the minimum eigenvalue for a circle with fast oscillating boundary conditions, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 319323. MR 1404781 (97f:35158)
 72.
 R. R. Gadyl'shin, A boundary value problem for the Laplacian with rapidly oscillating boundary conditions, Dokl. Akad. Nauk 362 (1998), 456459; English transl. in Dokl. Math. 58 (1998), 293296. MR 1708976 (2000g:35034)
 73.
 R. R. Gadyl'shin, The splitting of a multiple eigenvalue in a boundary value problem for a membrane clamped to a small section of the boundary, Sibirsk. Mat. Zh. 34, no. 3 (1993), 4361; English transl. in Siberian Math. J. 34 (1993), 433450. MR 1241167 (94k:35219)
 74.
 S. A. Nazarov and B. A. Plamenevskiĭ, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991; English transl., De Gruyter Expositions in Mathematics vol. 13, de Gruyter, Berlin, 1994. MR 1283387 (95h:35001)
 75.
 M. A. Lavrent'ev and B. V. Shabat, Methods in the theory of functions of a complex variable, Nauka, Moscow, 1987. (Russian) MR 1087298 (91k:30003)
Similar Articles
Retrieve articles in Transactions of the Moscow Mathematical Society
with MSC (2000):
35J25,
35B25,
35B27,
35B40
Retrieve articles in all journals
with MSC (2000):
35J25,
35B25,
35B27,
35B40
Additional Information
G. A. Chechkin
Affiliation:
Moscow State University, Moscow, Russia
Email:
chechkin@mech.math.msu.su
DOI:
http://dx.doi.org/10.1090/S0077155409001770
PII:
S 00771554(09)001770
Keywords:
Laplace operator,
eigenoscillations,
asymptotic expansions,
singular perturbations
Published electronically:
December 3, 2009
Additional Notes:
This research was partially supported by the Russian Foundation for Basic Research (grant # 09–01–00530a) and by the Programme for Support of Leading Scientific Schools (grant # NSh–1698.2008.1).
Article copyright:
© Copyright 2009
American Mathematical Society
