Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

Simple spectrum of the tensor product of powers of a mixing automorphism


Author: V. V. Ryzhikov
Translated by: E. Khukhro
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva.
Journal: Trans. Moscow Math. Soc. 2012, 183-191
MSC (2010): Primary 37A30; Secondary 28D05, 47A35
DOI: https://doi.org/10.1090/S0077-1554-2013-00209-5
Published electronically: March 21, 2013
MathSciNet review: 3184974
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that there exists a mixing automorphism of a Lebesgue space for which the tensor product of all its positive powers has simple spectrum.


References [Enhancements On Off] (What's this?)

  • 1. T. M. Adams, Smorodinsky's conjecture on rank-one systems, Proc. Amer. Math. Soc. 126 (1998), no. 3, 739-744. MR 1443143 (99e:28023)
  • 2. O. N. Ageev, The homogeneous spectrum problem in ergodic theory, Invent. Math. 160 (2005), no. 2, 417-446. MR 2138072 (2005m:37012)
  • 3. D. V. Anosov, On spectral multiplicities in ergodic theory, Sovremennye Problemy Matematiki, vol. 3 (electronic, #http://mi.mathnet.ru/eng/book474#), Steklov Math. Inst., Moscow, 2003. (Russian) MR 2141292 (2006d:37006)
  • 4. D. Creutz and C. E. Silva, Mixing on a class of rank-one transformations, Ergod. Theory and Dyn. Syst. 24 (2004), no. 2, 407-440. MR 2054050 (2005a:37011)
  • 5. A. I. Danilenko, A survey on spectral multiplicities of ergodic actions, Preprint, #arXiv:1104.1961#.
  • 6. A. Del Junco and M. Lemańczyk, Generic spectral properties of measure-preserving maps and applications, Proc. Amer. Math. Soc. 115 (1992), no. 3, 725-736. MR 1079889 (92i:28017)
  • 7. D. Ornstein, On the root problem in ergodic theory, Proc. of the Sixth Berkeley Symp. on Mathematical Statistics and Probability (Univ. California, Berkeley, 1970/1971), Vol. II: Probability theory, Univ. California, Berkeley, 1972, 347-356. MR 0399415 (53:3259)
  • 8. A. A. Prikhod'ko, Stochastic constructions of flows of rank $ 1$, Mat. Sb. 192 (2001), no. 12, 61-92; English transl., Sb. Math. 192 (2001), no. 11-12, 1799-1828. MR 1885913 (2003b:37002)
  • 9. V. V. Ryzhikov, Weak limits of powers, the simple spectrum of symmetric products and mixing constructions of rank $ 1$, Mat. Sb. 198 (2007), no. 5, 137-159; English transl., Sb. Math. 198 (2007), 733-754. MR 2354530 (2008m:37008)
  • 10. V. V. Ryzhikov, On mixing constructions with algebraic spacers, Preprint, #arXiv:1108.1508#.
  • 11. A. M. Stepin, Spectral properties of generic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), no. 4, 801-834; English transl., Math. USSR, Izv. 29 (1987), 159-192. MR 864178 (88e:58078)
  • 12. S. V. Tikhonov, Mixing transformations with homogeneous spectrum, Mat. Sb. 202 (2011), no. 8, 139-160; English transl., Sb. Math. 202 (2011), 1231-1252. MR 2866522

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 37A30, 28D05, 47A35

Retrieve articles in all journals with MSC (2010): 37A30, 28D05, 47A35


Additional Information

V. V. Ryzhikov
Affiliation: Moscow State University
Email: vryzh@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-2013-00209-5
Keywords: Automorphism of a Lebesgue space, tensor product, spectrum, mixing
Published electronically: March 21, 2013
Additional Notes: This research was supported by the grant NSh-5998.2012.1
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society