Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

Request Permissions   Purchase Content 
 
 

 

Properties of solutions of integro-differential equations arising in heat and mass transfer theory


Authors: V. V. Vlasov and N. A. Rautian
Translated by: V. E. Nazaikinskii
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2014, 185-204
MSC (2010): Primary 47G20; Secondary 34K30, 47A56, 34K12
DOI: https://doi.org/10.1090/S0077-1554-2014-00231-4
Published electronically: November 5, 2014
MathSciNet review: 3308609
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the present paper is to study the asymptotic behavior of solutions of integro-differential equations on the basis of spectral analysis of their symbols. To this end, we obtain representations of strong solutions of these equations in the form of a sum of terms corresponding to the real and nonreal parts of the spectrum of the operator functions that are the symbols of these equations. These representations are new for the class of integro-differential equations considered in the paper.


References [Enhancements On Off] (What's this?)

  • 1. G. Di Blasio, Parabolic Volterra integrodifferential equations of convolution type, J. Integral Equations Appl. 6 (1994), no. 4, 479-508. MR 1333519 (96c:45011)
  • 2. G. Di Blasio, K. Kunisch, and E. Sinestrari, $ L^2$-regularity for parabolic partial integro-differential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57. MR 751340 (86a:35136)
  • 3. G. Di Blasio, K. Kunisch, and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math. 50 (1985), no. 3, 231-263. MR 793856 (86j:35152)
  • 4. K. Kunisch and M. Mastinšek, Dual semigroups and structural operators for partial functional-differential equations with unbounded operators acting on the delays, Differential Integral Equations 3 (1990), no. 4, 733-756. MR 1044217 (91a:34057)
  • 5. J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser, Basel, 1993. MR 2964432
  • 6. J. Wu, Semigroup and integral form of a class of partial differential equations with infinite delay, Differential Integral Equations 4 (1991), no. 6, 1325-1351. MR 1133762 (92k:35282)
  • 7. J. Wu, Theory and applications of partial functional-differential equations, Applied Mathematical Sciences, vol. 119, Springer, New York, 1996. MR 1415838 (98a:35135)
  • 8. V. V. Vlasov, On the solvability and properties of solutions of functional-differential equations in a Hilbert space, Mat. Sb. 186 (1995), no. 8, 67-92; English transl., Sb. Math. 186 (1995), no. 8, 1147-1172. MR 1357357 (96g:34121)
  • 9. V. V. Vlasov, On the solvability and estimates for the solutions of functional-differential equations in Sobolev spaces, Tr. Mat. Inst. Steklova 227 (1999), Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. pt. 18, 109-121; English transl., Proc. Steklov Inst. Math. (1999), no. 4 (227), 104-115. MR 1784309 (2001j:35265)
  • 10. V. V. Vlasov, On the correct solvability of abstract parabolic equations with aftereffect, Dokl. Akad. Nauk 415 (2007), no. 2, 151-154; English transl., Dokl. Math. 76 (2007), no. 1, 511-513. MR 2452257 (2009f:34155)
  • 11. R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl. 66 (1978), no. 2, 313-332. MR 515894 (80g:45015)
  • 12. R. K. Miller and R. L. Wheeler, Well-posedness and stability of linear Volterra integro-differential equations in abstract spaces, Funkcial. Ekvac. 21 (1978), no. 3, 279-305. MR 540397 (80j:45017)
  • 13. V. V. Vlasov and K. I. Shmatov, Correct solvability of hyperbolic-type equations with aftereffect in a Hilbert space, Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ. Uravn., 127-137; English transl., Proc. Steklov Inst. Math. (2003), no. 4 (243), 120-130. MR 2049467 (2005d:35260)
  • 14. V. V. Vlasov and J. Wu, Solvability and spectral analysis of abstract hyperbolic equations with delay, Funct. Differ. Equ. 16 (2009), no. 4, 751-768. MR 2597474 (2011b:34231)
  • 15. V. V. Vlasov and D. A. Medvedev, Functional-differential equations in Sobolev spaces and related problems in spectral theory, Sovrem. Mat. Fundam. Napravl. 30 (2008), 3-173; English transl., J.  Math. Sci. (N. Y.) 164 (2010), no. 5, 659-841. MR 2472270 (2009m:35528)
  • 16. V. V. Vlasov, J. Wu, and G. R. Kabirova, Correct solvability and the spectral properties of abstract hyperbolic equations with aftereffect, Sovrem. Mat. Fundam. Napravl. 35 (2010), 44-59; English transl., J. Math. Sci. (N. Y.) 170 (2010), no. 3, 388-404. MR 2752638 (2012a:34135)
  • 17. R. K. Miller, Volterra integral equations in a Banach space, Funkcial. Ekvac. 18 (1975), no. 2, 163-193. MR 0410312 (53:14062)
  • 18. J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. 1-2, Springer, New York, 1972. MR 0350178 (50:2671)
  • 19. M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal. 31 (1968), no. 2, 113-126. MR 1553521
  • 20. L. Pandolfi, The controllability of the Gurtin-Pipkin equation: a cosine operator approach, Appl. Math. Optim. 52 (2005), no. 2, 143-165. MR 2157198 (2007a:93019)
  • 21. S. Ivanov and L. Pandolfi, Heat equation with memory: lack of controllability to rest, J. Math. Anal. Appl. 355 (2009), no. 1, 1-11. MR 2514446 (2010i:93010)
  • 22. N. A. Rautian, On the structure and properties of solutions of integrodifferential equations that arise in thermophysics and acoustics, Mat. Zametki 90 (2011), no. 3, 470-473; English transl., Math. Notes 90 (2011), no. 3-4, 455-459. MR 2868376
  • 23. S. Ivanov and T. Sheronova, Spectrum of the heat equation with memory, arXiv:0912.1818v1[math.CV].
  • 24. S. A. Ivanov, ``Wave type'' spectrum of the Gurtin-Pipkin equation of the second order, arXiv:1002.2831v2[math.CV].
  • 25. V. V. Vlasov and N. A. Rautian, Well-defined solvability and spectral analysis of abstract hyperbolic integrodifferential equations, Tr. Semin. im. I. G. Petrovskogo 28 (2011), no. 1, 75-113; English transl., J. Math. Sci. (N. Y.) 179 (2011), no. 3, 390-414.
  • 26. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, Solvability and spectral analysis of integro-differential equations arising in the theory of heat transfer and acoustics, Dokl. Akad. Nauk 434 (2010), no. 1, 12-15; English transl., Dokl. Math. 82 (2010), no. 2, 684-687. MR 2759262 (2011m:45006)
  • 27. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, Spectral analysis and correct solvability of abstract integrodifferential equations that arise in thermophysics and acoustics, Sovrem. Mat. Fundam. Napravl. 39 (2011), 36-65; English transl., J. Math. Sci. (N. Y.) 190 (2013), no. 1, 34-65. MR 2830676 (2012h:45010)
  • 28. V. V. Vlasov and N. A. Rautian, Correct solvability of integro-differential equations arising in the theory of heat transfer and acoustics, Funct. Differ. Equ. 19 (2012), no. 1-2, 213-230.
  • 29. A. V. Lykov, Heat and mass transfer problem, Nauka i Tekhnika, Minsk, 1976. (Russian)
  • 30. A. Eremenko and S. Ivanov, Spectra of the Gurtin-Pipkin type equations, SIAM J. Math. Anal. 43 (2011), no. 5, 2296-2306. MR 2861663 (2012m:45010)
  • 31. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, Investigation of operator models that arise in problems of hereditary mechanics, Sovrem. Mat. Fundam. Napravl. 45 (2012), 43-61. (Russian) MR 3087050
  • 32. J. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer, New York, 1993. MR 1237406 (94k:47049)
  • 33. V. V. Vlasov and N. A. Rautian, Spectral analysis and representations of solutions to abstract integrodifferential equations, Dokl. Akad. Nauk 454 (2014), no. 2, 141-144; English transl., Dokl. Math. 89 (2014), no. 1, 34-37. MR 3204641
  • 34. V. V. Vlasov and N. A. Rautian, Spectral analysis and representations of solutions of abstract integro-differential equations in Hilbert space, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., vol. 236, Birkhäuser-Springer, Basel, 2014, pp. 517-535. MR 3203082
  • 35. V. V. Vlasov, D. A. Medvedev, and N. A. Rautian, Functional-differential equations in Sobolev spaces and their spectral analysis, Sovrem. Problemy Mat. Mekh., vol. VIII, no. 1, Izd. Moskov. Gosud. Univ., Moscow, 2011.
  • 36. R. S. Ismagilov, N. A. Rautian, and V. V. Vlasov, Examples of very unstable linear partial functional differential equations, arXiv:1402.4107v1[math.AP].
  • 37. M. V. Fedoryuk, Asymptotics: integrals and series, Nauka, Moscow, 1987. (Russian) MR 950167 (89j:41045)
  • 38. R. Bellman and K. L. Cooke, Differential-difference equations, Academic Press, New York-London, 1963. MR 0147745 (26:5259)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 47G20, 34K30, 47A56, 34K12

Retrieve articles in all journals with MSC (2010): 47G20, 34K30, 47A56, 34K12


Additional Information

V. V. Vlasov
Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Email: vikmont@yandex.ru

N. A. Rautian
Affiliation: Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Email: nraytian@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-2014-00231-4
Keywords: Integro-differential equation, operator function, spectral analysis
Published electronically: November 5, 2014
Additional Notes: The first author was supported by RFBR grants no. 14-01-00349, 13-01-12476-ofi-m-2013, and 13-01-00384.
The second author was supported by RFBR grants no. 14-01-00349 and 13-01-00384.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society