Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)



On symplectic dynamics near a homoclinic orbit to 1-elliptic fixed point

Authors: Lev Lerman and Anna Markova
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 76 (2015), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2015, 271-299
MSC (2010): Primary 37J10, 37J30, 37J45, 70H07
Published electronically: November 18, 2015
MathSciNet review: 3468068
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the orbit behavior of a 4-dimensional smooth symplectic diffeomorphism $ f$ near a homoclinic orbit $ \Gamma $ to a 1-elliptic fixed point under some natural genericity assumptions. A 1-elliptic fixed point has two real eigenvalues outside the unit circle and two on the unit circle. Thus there is a smooth 2-dimensional center manifold $ W^c$ where the restriction of the diffeomorphism has the elliptic fixed point supposed to be generic (no strong resonances and first Birkhoff coefficient is non-zero). Then the Moser theorem guarantees the existence of a positive measure set of KAM invariant curves. $ W^c$ itself is a normally hyperbolic manifold in the whole phase space and due to Fenichel results in every point on $ W^c$ having 1-dimensional stable and unstable smooth invariant curves smoothly foliating the related stable and unstable manifolds. In particular, each KAM invariant curve has stable and unstable smooth 2-dimensional invariant manifolds being Lagrangian ones. Stable and unstable manifolds of $ W^c$ are 3-dimensional smooth manifolds which are assumed to be transverse along homoclinic orbit $ \Gamma $. One of our theorems presents conditions under which each KAM invariant curve on $ W^c$ in a sufficiently small neighborhood of $ \Gamma $ has four transverse homoclinic orbits. Another result ensures that under some Moser genericity assumption for the restriction of $ f$ on $ W^c$ saddle periodic orbits in the resonance zone also have homoclinic orbits in the whole phase space, though its transversality or tangency cannot be verified directly. All this implies the complicated dynamics of the diffeomorphism and can serve as a criterion of its non-integrability.

References [Enhancements On Off] (What's this?)

  • 1. Arnold V. I., Mathematical methods of classical mechanics. New York: Springer-Verlag, 1989. MR 997295 (90c:58046)
  • 2. Arnold V., Kozlov V., Neishtadt A., Mathematical aspects of classical and celestial mechanics, Dynamical systems III. Berlin: Springer-Verlag, 2006. MR 2269239 (2008a:70001)
  • 3. Arnold V. I., Givental A. B., Symplectic Geometry and its Applications, Dynamical Systems IV, Eds. Arnold V. I. & Novikov S. P. New York: Springer-Verlag, 1990. MR 1042758 (90j:58039)
  • 4. Bolotin S. V., Homoclinic orbits to invariant tori of Hamiltonian systems, AMS Transl. Ser. 2. 1995. Vol. 168. P. 21-90. MR 1351032 (97b:58124)
  • 5. Bolotin S. V., Treschev D. V., Remarks on the definition of hyperbolic tori of Hamiltonian systems, Regul. Chaotic Dyn. 2000. Vol. 5, No. 4. P. 401-412. MR 1810623 (2002h:37119)
  • 6. Celletti A., Negrini P., Non-integrability of the problem of motion around an oblate planet, Cel. Mech. Dynam. Astron. 1995. Vol. 61. P. 253-260. MR 1335526 (96f:70018)
  • 7. Conley C. C., On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits, J. Diff. Equat. 1969. Vol. 5. P. 136-158. MR 0251301 (40:4532)
  • 8. Cresson J., Symbolic dynamics and Arnold diffusion, J. Diff. Equat. 2003. Vol. 187. P. 269-292. MR 1949441 (2004d:37088)
  • 9. Cushman R., Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors, Trans. AMS. 1978. Vol. 238, No. 1. P. 45-55. MR 0478223 (57:17709)
  • 10. Delshams A., Gutiérrez P., Splitting potential and the Poincaré-Melnikov method for whiskered tori in Hamiltonian systems, J. Nonlinear Sci. 2000. Vol. 10, No. 4. P. 433-476. MR 1766491 (2001d:37094)
  • 11. Delshams A., de la Llave R., Seara T. M., Geometric properties of the scattering map of a normally hyperbolic invariant manifold, Adv. Math. 2008. Vol. 217, No. 3. P. 1096-1153. MR 2383896 (2008m:37100)
  • 12. Devaney R. L., Homoclinic orbits in Hamiltonian systems, J. Diff. Equat. 1976. Vol. 21, No. 2. P. 431-438. MR 0442990 (56:1365)
  • 13. Easton R., Homoclinic phenomena in Hamiltonian systems with several degrees of freedom, J. Diff. Equat. 1978. Vol. 29. P. 241-252. MR 502350 (80d:58026)
  • 14. Fenichel N., Asymptotic stability with rate conditions, Indiana Univ. Math. J. 1974. Vol. 23, No. 12. P. 1109-1137. MR 0339276 (49:4036)
  • 15. Fenichel N., Asymptotic stability with rate conditions, II, Indiana Univ. Math. J. 1977. Vol. 26, No. 1. P. 81-93. MR 0426056 (54:14002)
  • 16. Franks J., Rotation numbers and instability sets, Bull. AMS. 2003. Vol. 40, No. 3. P. 263-279. MR 1978565 (2004h:37063)
  • 17. Gonchenko S. V., Shilnikov L. P., Turaev D. V., Elliptic periodic orbits near a homoclinic tangency in four-dimensional symplectic maps and Hamiltonian systems with three degrees of freedom, Reg. Chaot. Dyn. 1998. Vol. 3, No. 4. P. 3-26. MR 1704979 (2000h:37084)
  • 18. Grotta Ragazzo C., Nonintegrability of some Hamiltonian systems, scattering and analytic continuation, Comm. Math. Phys. 1994. Vol. 166. P. 255-277. MR 1309550 (95m:58058)
  • 19. Grotta Ragazzo C., Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers, Comm. Pure Appl. Math. 1997. Vol. 50, No. 2. P. 105-147. MR 1426709 (98d:58151)
  • 20. Grotta Ragazzo C., Koiller J., Oliva W. M., On the motion of two-dimensional vortices with mass, J. Nonlinear Sci. 1994. Vol. 4, No. 5. P. 375-418. MR 1291115 (95e:58066)
  • 21. Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds. Berlin-New York: Springer-Verlag, 1977. (Lecture Notes in Math.; Vol. 583). MR 0501173 (58:18595)
  • 22. Kelley A., The stable, center-stable, center, center-unstable, unstable manifolds, J. Diff. Equat. 1967. Vol. 3. P. 546-570. MR 0221044 (36:4096)
  • 23. Koltsova O. Yu., Lerman L. M., Periodic and homoclinic orbits in a two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center, Int. J. Bifurcation & Chaos. 1995. Vol. 5, No. 2. P. 397-408. MR 1341274 (96f:58060)
  • 24. Koltsova O., Lerman L., Families of transverse Poincaré homoclinic orbits in 2N-dimensional Hamiltonian systems close to the system with a loop to a saddle-center, Int. J. Bifurcation & Chaos. 1996. Vol. 6, No. 6. P. 991-1006. MR 1409407 (97g:58060)
  • 25. Koltsova O., Lerman L., Delshams A., Gutiérrez P., Homoclinic orbits to invariant tori near a homoclinic orbit to center-center-saddle equilibrium, Phys. D. 2005. Vol. 201, No. 3-4. P. 268-290. MR 2123447 (2005m:37140)
  • 26. Kozlov V. V., Integrability and non-integrability in Hamiltonian mechanics, Russ. Math. Surv. 1983. Vol. 38. P. 1-76. MR 693718 (84k:58076)
  • 27. de la Llave R., Some recent progress in geometric methods in the instability problem in Hamiltonian mechanics, Intern. Congr. of Mathematicians (Madrid, Spain, 2006). Vol. 2. Zürich: Eur. Math. Soc., 2006. P. 1705-1729. MR 2275666 (2007m:37133)
  • 28. Lerman L. M., Complex dynamics and bifurcations in Hamiltonian system having the transversal homoclinic orbit to a saddle focus, Chaos. 1991. Vol. 1, No. 2. P. 174-180. MR 1135905 (92h:58152)
  • 29. Lerman L. M., Umanskiy Ya. L., On the existence of separatrix loops in four-dimensional systems similar to the integrable Hamiltonian systems, Prikl. Mat. Mekh. 1983. Vol. 47, No. 3. P. 395-401 (in Russian). (Engl. transl. J. Appl. Math. Mech., 1983, vol. 47, No. 3, p. 335-340). MR 760166 (86b:58043)
  • 30. Lerman L. M., Hamiltonian systems with a separatrix loop of a saddle-center, Methods of Qualitative Theory of Diff. Equat. / Ed. E. A. Leontovich-Andronova. Gorky State Univ., 1987. P. 89-103 (Russian) (Engl. transl. Selecta Math. Sov., 1991, vol. 10, No. 3, p. 297-306). MR 1120110
  • 31. Lidov M. L., Vashkov'yak M. A., Doubly asymptotic symmetric orbits in the plane restricted circular three-body problem. Preprint No. 115, Inst. for Applied Math. of USSR Acad. of Sci., Moscow, 1975 (in Russian).
  • 32. Llibre J., Martínez R., Simó C., Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $ L\sb 2$ in the restricted three-body problem, J. Diff. Equat. 1985. Vol. 58, No. 1. P. 104-156. MR 791842 (87a:58066)
  • 33. Melnikov V. K., On the stability of a center for time-periodic perturbations, Trudy Moskov. Mat. Obsch. 1963. Vol. 12. P. 3-52 (in Russian). MR 0156048 (27:5981)
  • 34. Mielke A., Hamiltonian and Lagrangian flows on center manifolds. Berlin: Springer-Verlag, 1991. (Lecture Notes in Math.; Vol. 1489). MR 1165943 (93f:58080)
  • 35. Mielke A., Holmes P., O'Reilly O., Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dyn. Diff. Equat. 1992. Vol. 4, No. 1. P. 95-126. MR 1150399 (93c:58161)
  • 36. Moser J., Lectures on Hamiltonian systems, Memoirs of AMS. 1968. Vol. 81. MR 0230498 (37:6060)
  • 37. Robinson C., Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergod. Theory Dyn. Syst. 1988. Vol. 8. P. 395-409. MR 967646 (89m:58100)
  • 38. Rüssmann H., Kleine Nenner I: Über invarianten Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Acad. Wiss. Göttingen Math. Phys. Kl. II. 1970. P. 67-105. MR 0273156 (42:8037)
  • 39. Smale S., Differential dynamical systems, Bull. AMS. 1967. Vol. 73. P. 747-817. MR 0228014 (37:3598)
  • 40. Turaev D. V., Shilnikov L. P., On Hamiltonian systems with homoclinic saddle curves, Soviet Math. Dokl. 1989. Vol. 39. P. 165-168. MR 988994 (90d:58047)
  • 41. Treshchev D., Hyperbolic tori and asymptotic surfaces in Hamiltonian systems, Russian J. Math. Phys. 1994. Vol. 2, No. 1. P. 93-110. MR 1297943 (95g:58204)
  • 42. Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons. The inverse problem method. Plenum Press, 1999.

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 37J10, 37J30, 37J45, 70H07

Retrieve articles in all journals with MSC (2010): 37J10, 37J30, 37J45, 70H07

Additional Information

Lev Lerman
Affiliation: Department of Differential Equations & Mathematical Analysis — and — Research Institute for Applied Mathematics & Cybernetics, Lobachevsky State University of Nizhny Novgorod

Anna Markova
Affiliation: Department of Differential Equations & Mathematical Analysis — and — Research Institute for Applied Mathematics & Cybernetics, Lobachevsky State University of Nizhny Novgorod

Keywords: 1-elliptic fixed point, homoclinic, invariant curve, periodic orbits
Published electronically: November 18, 2015
Additional Notes: The authors thank R. de la Llave and S.V.Gonchenko for useful discussions
The authors acknowledge partial support from the Russian Foundation for Basic Research under the grants 13-01-00589a (first author) and 14-01-00344 (second author)
The first author is also grateful for support from the Russian Ministry of Science and Education (project 1.1410.2014/K, target part) and from the Russian Science Foundation (project 14-41-00044).
Article copyright: © Copyright 2015 L. Lerman, A. Markova

American Mathematical Society