A note on the alternating direction implicit method for the numerical solution of heat flow problems

Author:
Jim Douglas

Journal:
Proc. Amer. Math. Soc. **8** (1957), 409-412

MSC:
Primary 65.3X

DOI:
https://doi.org/10.1090/S0002-9939-1957-0090876-7

MathSciNet review:
0090876

Full-text PDF

References | Similar Articles | Additional Information

**[1]**J. Douglas,*On the numerical integration of**by implicit methods*, J. Soc. Ind. Appl. Math. vol. 3 (1955) pp. 42-65. MR**0071875 (17:196e)****[2]**-,*On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations*, Journal of the Society for Industrial and Applied Mathematics vol. 4 (1956) pp. 20-37. MR**0080368 (18:236d)****[3]**J. Douglas and T. M. Gallie,*Variable time steps in the solution of the heat flow equation by a difference equation*, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 787-793. MR**0078754 (17:1241i)****[4]**J. Douglas, and D. W. Peaceman,*Numerical solution of two-dimensional heat flow problems*. A.I.Ch.E. Journal vol. 1 (1955) pp. 505-512.**[5]**W. E. Milne,*Numerical solution of differential equations*, New York, 1953. MR**0068321 (16:864c)****[6]**D. W. Peaceman, and H. H. Rachford,*The numerical solution of parabolic and elliptic differential equations*, J. Soc. Ind. Appl. Math. vol. 3 (1955) pp. 28-41. MR**0071874 (17:196d)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
65.3X

Retrieve articles in all journals with MSC: 65.3X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1957-0090876-7

Article copyright:
© Copyright 1957
American Mathematical Society