Widely connected and biconnected semigroups

Author:
Paul M. Swingle

Journal:
Proc. Amer. Math. Soc. **11** (1960), 249-254

MSC:
Primary 22.05

DOI:
https://doi.org/10.1090/S0002-9939-1960-0113971-2

MathSciNet review:
0113971

Full-text PDF

References | Similar Articles | Additional Information

**[1]**B. Knaster and C. Kuratowski,*Sur les ensembles connexes*, Fund. Math. vol. 2 (1921) pp. 206-253.**[2]**R. J. Koch,*Arcs in partially ordered spaces*, to appear.**[3]**R. L. Moore,*Foundations of point set theory*, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.**[4]**A. D. Wallace,*The structure of topological semigroups*, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 95-112.**[5]**A. D. Wallace and R. J. Koch,*Maximal ideals in compact semigroups*, Duke Math. J. vol. 21 (1954) pp. 681-685.**[6]**-,*Notes on mobs*, Tulane University, mimeographed, 1956.**[7]**P. M. Swingle,*Existence of widely connected and biconnected semigroups*, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 243-248.**[8]**-,*Two types of connected sets*, Bull. Amer. Math. Soc. vol. 37 (1931) pp. 254-258.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22.05

Retrieve articles in all journals with MSC: 22.05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1960-0113971-2

Article copyright:
© Copyright 1960
American Mathematical Society