Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A stability criterion for Hill's equation


Author: Harry Hochstadt
Journal: Proc. Amer. Math. Soc. 13 (1962), 601-603
MSC: Primary 34.51
DOI: https://doi.org/10.1090/S0002-9939-1962-0137892-6
MathSciNet review: 0137892
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer-Verlag, Berlin, 1959. MR 0118904 (22:9673)
  • [2] A. Lyapunov, Problème général de la stabilité der movement, Toulouse Univ., Fac. Sci. Ann. (2) 9 (1907), 203-474. Reprinted by Princeton Univ. Press.
  • [3] W. Magnus, and A. Shenitzer, Hill's equation. I. General theory, New York Univ., Inst. Math. Sci., Div. EM Res., Research Report No. BR-22 (1957). MR 0089001 (19:607g)
  • [4] H. Hochstadt, Asymptotic estimates for the Sturm-Liouville spectrum, New York Univ., Inst. Math. Sci., Div. EM Res., Research Report No. BR-36; to be published, Comm. Pure Appl. Math. (1961). MR 0132863 (24:A2699)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34.51

Retrieve articles in all journals with MSC: 34.51


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1962-0137892-6
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society