Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An imbedding theorem for connected $ 3$-manifolds with boundary


Author: B. G. Casler
Journal: Proc. Amer. Math. Soc. 16 (1965), 559-566
MSC: Primary 55.70
DOI: https://doi.org/10.1090/S0002-9939-1965-0178473-0
MathSciNet review: 0178473
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 0100841 (20:7269)
  • [2] E. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann of Math. (2) 56 (1952), 96-114. MR 0048805 (14:72d)
  • [3] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc., 45 (1939), 243-327.
  • [4] -, The immersion of an open 3-manifold in Euclidean 3-space, Proc. London Math. Soc. (3) 11 (1961), 81-90. MR 0124916 (23:A2224)
  • [5] E. C. Zeeman, Polyhedral n-manifolds. II. Embeddings, Topology of 3-manifolds and related topics, pp. 64-70, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0158371 (28:1596)
  • [6] J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745. MR 0166790 (29:4063)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55.70

Retrieve articles in all journals with MSC: 55.70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1965-0178473-0
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society