An imbedding theorem for connected -manifolds with boundary

Author:
B. G. Casler

Journal:
Proc. Amer. Math. Soc. **16** (1965), 559-566

MSC:
Primary 55.70

DOI:
https://doi.org/10.1090/S0002-9939-1965-0178473-0

MathSciNet review:
0178473

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. H. Bing,*An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37-65. MR**0100841 (20:7269)****[2]**E. E. Moise,*Affine structures in 3-manifolds*. V.*The triangulation theorem and Hauptvermutung*, Ann of Math. (2)**56**(1952), 96-114. MR**0048805 (14:72d)****[3]**J. H. C. Whitehead,*Simplicial spaces, nuclei, and m-groups*, Proc. London Math. Soc.,**45**(1939), 243-327.**[4]**-,*The immersion of an open 3-manifold in Euclidean 3-space*, Proc. London Math. Soc. (3)**11**(1961), 81-90. MR**0124916 (23:A2224)****[5]**E. C. Zeeman,*Polyhedral n-manifolds*. II.*Embeddings*, Topology of 3-manifolds and related topics, pp. 64-70, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR**0158371 (28:1596)****[6]**J. F. P. Hudson and E. C. Zeeman,*On regular neighbourhoods*, Proc. London Math. Soc. (3)**14**(1964), 719-745. MR**0166790 (29:4063)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55.70

Retrieve articles in all journals with MSC: 55.70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1965-0178473-0

Article copyright:
© Copyright 1965
American Mathematical Society