A complementary triangle inequality in Hilbert and Banach spaces

Authors:
J. B. Diaz and F. T. Metcalf

Journal:
Proc. Amer. Math. Soc. **17** (1966), 88-97

MSC:
Primary 46.15; Secondary 46.10

DOI:
https://doi.org/10.1090/S0002-9939-1966-0188748-8

MathSciNet review:
0188748

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Herbert S. Wilf,*Some applications of the inequality of arithmetic and geometric means to polynomial equations*, Proc. Amer. Math. Soc.**14**(1963), 263-265. MR**0145047 (26:2583)****[2]**J. B. Diaz and F. T. Metcalf,*Complementary inequalities*. I:*inequalities complementary to Cauchy's inequality for sums of real numbers*, J. Math. Anal. Appl.**9**(1964), 59-74. MR**0174679 (30:4879)****[3]**-,*Complementary inequalities*. II:*inequalities complementary to the Buniakowsky-Schwarz inequality for integrals*, J. Math. Anal. Appl.**9**(1964), 278-293. MR**0174680 (30:4880)****[4]**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge University Press, New York, 1959.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46.15,
46.10

Retrieve articles in all journals with MSC: 46.15, 46.10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1966-0188748-8

Article copyright:
© Copyright 1966
American Mathematical Society