Degree of approximation by polynomials to functions of bounded variation

Author:
Hassoon S. Al-Amiri

Journal:
Proc. Amer. Math. Soc. **17** (1966), 984-991

MSC:
Primary 30.70

MathSciNet review:
0199410

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Hassoon S. Al-Amiri,*The 𝑎-points of Faber polynomials*, Bull. College Sci. (Baghdad)**8**(1965), 1–25 (English, with Arabic summary). MR**0224781****[2]**Georg Faber,*Über polynomische Entwickelungen*, Math. Ann.**57**(1903), no. 3, 389–408 (German). MR**1511216**, 10.1007/BF01444293**[3]**Dunham Jackson,*The theory of approximation*, American Mathematical Society Colloquium Publications, vol. 11, American Mathematical Society, Providence, RI, 1994. Reprint of the 1930 original. MR**1451140****[4]**W. E. Sewell,*Degree of approximation by polynomials to continuous functions*, Bull. Amer. Math. Soc.**41**(1935), no. 2, 111–117. MR**1563032**, 10.1090/S0002-9904-1935-06029-X**[5]**J. L. Walsh and W. E. Sewell,*Sufficient conditions for various degrees of approximation by polynomials*, Duke Math. J.**6**(1940), 658–705. MR**0002592****[6]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30.70

Retrieve articles in all journals with MSC: 30.70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1966-0199410-X

Article copyright:
© Copyright 1966
American Mathematical Society