Dispersion-free states and the exclusion of hidden variables

Author:
S. P. Gudder

Journal:
Proc. Amer. Math. Soc. **19** (1968), 319-324

MSC:
Primary 81.06; Secondary 06.00

DOI:
https://doi.org/10.1090/S0002-9939-1968-0224339-X

MathSciNet review:
0224339

Full-text PDF

References | Similar Articles | Additional Information

**[1]**John S. Bell,*On the problem of hidden variables in quantum mechanics*, Rev. Modern Phys.**38**(1966), 447–452. MR**0208927**, https://doi.org/10.1103/RevModPhys.38.447**[2]**D. Bohm and J. Bub,*A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory*, Rev. Modern Phys.**38**(1966), 453–469. MR**0208928**, https://doi.org/10.1103/RevModPhys.38.453**[3]**D. Bohm and J. Bub,*A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics*, Rev. Modern Phys.**38**(1966), 470–475. MR**0208929**, https://doi.org/10.1103/RevModPhys.38.470**[4]**J. M. Jauch and C. Piron,*Can hidden variables be excluded in quantum mechanics?*, Helv. Phys. Acta**36**(1963), 827–837. MR**0171511****[5]**Simon Kochen and E. P. Specker,*The problem of hidden variables in quantum mechanics*, J. Math. Mech.**17**(1967), 59–87. MR**0219280****[6]**G. Mackey,*The mathematical foundations of quantum mechanics*, Benjamin, New York, 1963.**[7]**M. Mac Laren,*Notes on axioms for quantum mechanics*, ANL-7065, Argonne National Laboratory, 1965.**[8]**John von Neumann,*Mathematical foundations of quantum mechanics*, Princeton University Press, Princeton, 1955. Translated by Robert T. Beyer. MR**0066944****[9]**C. Papaliolious,*Experimental test of a hidden variable quantum theory*, Phys. Rev. Lett.**18**(1967), 622-625.**[10]**Arlan Ramsay,*A theorem on two commuting observables*, J. Math. Mech.**15**(1966), 227–234. MR**0186587****[11]**Norbert Wiener, Armand Siegel, Bayard Rankin, and William Ted Martin,*Differential space, quantum systems, and prediction*, The M.I.T. Press, Cambridge, Mass.-London, 1966. MR**0216563****[12]**J. Tutsch,*Collapse time for the Bohm-Bub hidden variable theory*, Rev. Modern Phys. (to appear).**[13]**R. Wagsness,*Hidden variables and magnetic relaxation*, Phys. Rev. (to appear).**[14]**G. C. Wick, A. S. Wightman, and E. P. Wigner,*The intrinsic parity of elementary particles*, Physical Rev. (2)**88**(1952), 101–105. MR**0053796****[15]**Neal Zierler and Michael Schlessinger,*Boolean embeddings of orthomodular sets and quantum logic*, Duke Math. J.**32**(1965), 251–262. MR**0175520**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
81.06,
06.00

Retrieve articles in all journals with MSC: 81.06, 06.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1968-0224339-X

Article copyright:
© Copyright 1968
American Mathematical Society