Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Dispersion-free states and the exclusion of hidden variables


Author: S. P. Gudder
Journal: Proc. Amer. Math. Soc. 19 (1968), 319-324
MSC: Primary 81.06; Secondary 06.00
MathSciNet review: 0224339
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] John S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38 (1966), 447–452. MR 0208927
  • [2] D. Bohm and J. Bub, A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory, Rev. Modern Phys. 38 (1966), 453–469. MR 0208928
  • [3] D. Bohm and J. Bub, A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics, Rev. Modern Phys. 38 (1966), 470–475. MR 0208929
  • [4] J. M. Jauch and C. Piron, Can hidden variables be excluded in quantum mechanics?, Helv. Phys. Acta 36 (1963), 827–837. MR 0171511
  • [5] Simon Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17 (1967), 59–87. MR 0219280
  • [6] G. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963.
  • [7] M. Mac Laren, Notes on axioms for quantum mechanics, ANL-7065, Argonne National Laboratory, 1965.
  • [8] John von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, Princeton, 1955. Translated by Robert T. Beyer. MR 0066944
  • [9] C. Papaliolious, Experimental test of a hidden variable quantum theory, Phys. Rev. Lett. 18 (1967), 622-625.
  • [10] Arlan Ramsay, A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227–234. MR 0186587
  • [11] Norbert Wiener, Armand Siegel, Bayard Rankin, and William Ted Martin, Differential space, quantum systems, and prediction, The M.I.T. Press, Cambridge, Mass.-London, 1966. MR 0216563
  • [12] J. Tutsch, Collapse time for the Bohm-Bub hidden variable theory, Rev. Modern Phys. (to appear).
  • [13] R. Wagsness, Hidden variables and magnetic relaxation, Phys. Rev. (to appear).
  • [14] G. C. Wick, A. S. Wightman, and E. P. Wigner, The intrinsic parity of elementary particles, Physical Rev. (2) 88 (1952), 101–105. MR 0053796
  • [15] Neal Zierler and Michael Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965), 251–262. MR 0175520

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 81.06, 06.00

Retrieve articles in all journals with MSC: 81.06, 06.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1968-0224339-X
Article copyright: © Copyright 1968 American Mathematical Society