Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dispersion-free states and the exclusion of hidden variables


Author: S. P. Gudder
Journal: Proc. Amer. Math. Soc. 19 (1968), 319-324
MSC: Primary 81.06; Secondary 06.00
DOI: https://doi.org/10.1090/S0002-9939-1968-0224339-X
MathSciNet review: 0224339
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Bell, On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38 (1966), 447-452. MR 0208927 (34:8735)
  • [2] D. Bohm and J. Bub, A proposed solution to the measurement problem in quantum mechanics by hidden variables, Rev. Modern Phys. 38 (1966), 453-469. MR 0208928 (34:8736)
  • [3] -, A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics, Rev. Modern Phys. 38 (1966), 470-485. MR 0208929 (34:8737)
  • [4] J. Jauch and C. Piron, Can hidden variables be excluded in quantum mechanics?, Helv. Phys. Acta 36 (1963), 827-837. MR 0171511 (30:1742)
  • [5] S. Kochen and E. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17 (1967), 59-87. MR 0219280 (36:2363)
  • [6] G. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963.
  • [7] M. Mac Laren, Notes on axioms for quantum mechanics, ANL-7065, Argonne National Laboratory, 1965.
  • [8] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press, Princeton, N. J., 1955. MR 0066944 (16:654a)
  • [9] C. Papaliolious, Experimental test of a hidden variable quantum theory, Phys. Rev. Lett. 18 (1967), 622-625.
  • [10] A. Ramsey, A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227-234. MR 0186587 (32:4046)
  • [11] B. Rankin (Editor), Differential space, quantum systems and prediction, M.I.T. Press, Cambridge, Mass., 1966. MR 0216563 (35:7394)
  • [12] J. Tutsch, Collapse time for the Bohm-Bub hidden variable theory, Rev. Modern Phys. (to appear).
  • [13] R. Wagsness, Hidden variables and magnetic relaxation, Phys. Rev. (to appear).
  • [14] G. Wick, E. Wigner and A. Wightman, Intrinsic parity of elementary particles, Phys. Rev. 88 (1952), 101-105. MR 0053796 (14:827e)
  • [15] N. Zierler and M. Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965) 251-262. MR 0175520 (30:5704)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 81.06, 06.00

Retrieve articles in all journals with MSC: 81.06, 06.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1968-0224339-X
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society