Dispersionfree states and the exclusion of hidden variables
Author:
S. P. Gudder
Journal:
Proc. Amer. Math. Soc. 19 (1968), 319324
MSC:
Primary 81.06; Secondary 06.00
MathSciNet review:
0224339
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
John
S. Bell, On the problem of hidden variables in quantum
mechanics, Rev. Modern Phys. 38 (1966),
447–452. MR 0208927
(34 #8735)
 [2]
D.
Bohm and J.
Bub, A proposed solution of the measurement problem in quantum
mechanics by a hidden variable theory, Rev. Modern Phys.
38 (1966), 453–469. MR 0208928
(34 #8736)
 [3]
D.
Bohm and J.
Bub, A refutation of the proof by Jauch and Piron that hidden
variables can be excluded in quantum mechanics, Rev. Modern Phys.
38 (1966), 470–475. MR 0208929
(34 #8737)
 [4]
J.
M. Jauch and C.
Piron, Can hidden variables be excluded in quantum mechanics?,
Helv. Phys. Acta 36 (1963), 827–837. MR 0171511
(30 #1742)
 [5]
Simon
Kochen and E.
P. Specker, The problem of hidden variables in quantum
mechanics, J. Math. Mech. 17 (1967), 59–87. MR 0219280
(36 #2363)
 [6]
G. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963.
 [7]
M. Mac Laren, Notes on axioms for quantum mechanics, ANL7065, Argonne National Laboratory, 1965.
 [8]
John
von Neumann, Mathematical foundations of quantum mechanics,
Princeton University Press, Princeton, 1955. Translated by Robert T. Beyer.
MR
0066944 (16,654a)
 [9]
C. Papaliolious, Experimental test of a hidden variable quantum theory, Phys. Rev. Lett. 18 (1967), 622625.
 [10]
Arlan
Ramsay, A theorem on two commuting observables, J. Math. Mech.
15 (1966), 227–234. MR 0186587
(32 #4046)
 [11]
Norbert
Wiener, Armand
Siegel, Bayard
Rankin, and William
Ted Martin, Differential space, quantum systems, and
prediction, The M.I.T. Press, Cambridge, Mass.London, 1966. MR 0216563
(35 #7394)
 [12]
J. Tutsch, Collapse time for the BohmBub hidden variable theory, Rev. Modern Phys. (to appear).
 [13]
R. Wagsness, Hidden variables and magnetic relaxation, Phys. Rev. (to appear).
 [14]
G.
C. Wick, A.
S. Wightman, and E.
P. Wigner, The intrinsic parity of elementary particles,
Physical Rev. (2) 88 (1952), 101–105. MR 0053796
(14,827e)
 [15]
Neal
Zierler and Michael
Schlessinger, Boolean embeddings of orthomodular sets and quantum
logic, Duke Math. J. 32 (1965), 251–262. MR 0175520
(30 #5704)
 [1]
 J. Bell, On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38 (1966), 447452. MR 0208927 (34:8735)
 [2]
 D. Bohm and J. Bub, A proposed solution to the measurement problem in quantum mechanics by hidden variables, Rev. Modern Phys. 38 (1966), 453469. MR 0208928 (34:8736)
 [3]
 , A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics, Rev. Modern Phys. 38 (1966), 470485. MR 0208929 (34:8737)
 [4]
 J. Jauch and C. Piron, Can hidden variables be excluded in quantum mechanics?, Helv. Phys. Acta 36 (1963), 827837. MR 0171511 (30:1742)
 [5]
 S. Kochen and E. Specker, The problem of hidden variables in quantum mechanics, J. Math. Mech. 17 (1967), 5987. MR 0219280 (36:2363)
 [6]
 G. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963.
 [7]
 M. Mac Laren, Notes on axioms for quantum mechanics, ANL7065, Argonne National Laboratory, 1965.
 [8]
 J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press, Princeton, N. J., 1955. MR 0066944 (16:654a)
 [9]
 C. Papaliolious, Experimental test of a hidden variable quantum theory, Phys. Rev. Lett. 18 (1967), 622625.
 [10]
 A. Ramsey, A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227234. MR 0186587 (32:4046)
 [11]
 B. Rankin (Editor), Differential space, quantum systems and prediction, M.I.T. Press, Cambridge, Mass., 1966. MR 0216563 (35:7394)
 [12]
 J. Tutsch, Collapse time for the BohmBub hidden variable theory, Rev. Modern Phys. (to appear).
 [13]
 R. Wagsness, Hidden variables and magnetic relaxation, Phys. Rev. (to appear).
 [14]
 G. Wick, E. Wigner and A. Wightman, Intrinsic parity of elementary particles, Phys. Rev. 88 (1952), 101105. MR 0053796 (14:827e)
 [15]
 N. Zierler and M. Schlessinger, Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J. 32 (1965) 251262. MR 0175520 (30:5704)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
81.06,
06.00
Retrieve articles in all journals
with MSC:
81.06,
06.00
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919680224339X
PII:
S 00029939(1968)0224339X
Article copyright:
© Copyright 1968 American Mathematical Society
