Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the $ L\sp{1}$ norm and the mean value of a trigonometric series


Authors: L. C. Kurtz and S. M. Shah
Journal: Proc. Amer. Math. Soc. 19 (1968), 1023-1028
MSC: Primary 42.05
MathSciNet review: 0231108
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Chowla, Some applications of a method of A. Selberg, J. Reine Angew. Math. 217 (1965), 128-132. MR 0172853 (30:3070)
  • [2] J. Chidambaraswamy and S. M. Shah, Trigonometric series with nonnegative partial sums, J. Reine Angew. Math. 229 (1968), 163-169. MR 0223814 (36:6861)
  • [3] H. Halberstam and K. F. Roth, Sequences, Vol. I, Clarendon Press, Oxford, 1966. MR 0210679 (35:1565)
  • [4] R. D. Halbgewachs and S. M. Shah, Trigonometric sums and Fresnel-type integrals, Proc. Indian Acad. Sci. Sect. A 65 (1967), 227-232. MR 0212990 (35:3855)
  • [5] S. M. Shah, Trigonometric series with non-negative partial sums, Proc. Sympos. Pure Math., Vol. 11, Amer. Math. Soc., Providence, R. I., 1968. MR 0238016 (38:6293)
  • [6] S. Uchiyama, On the mean modulus of trigonometric polynomials whose coefficients have random signs, Proc. Amer. Math. Soc. 16 (1965), 1185-1190. MR 0185362 (32:2830)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42.05

Retrieve articles in all journals with MSC: 42.05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1968-0231108-3
Article copyright: © Copyright 1968 American Mathematical Society