Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continua not an inverse limit with a single bonding map on a polyhedron


Author: J. W. Rogers
Journal: Proc. Amer. Math. Soc. 21 (1969), 281-283
MSC: Primary 54.55
DOI: https://doi.org/10.1090/S0002-9939-1969-0248758-1
MathSciNet review: 0248758
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. J. Andrews, A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic, Proc. Amer. Math. Soc. 12 (1961), 333-334. MR 0120607 (22:11357)
  • [2] C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653-659. MR 0110999 (22:1867)
  • [3] M. K. Fort, Jr. and J. Segal, Local connectedness of inverse limit spaces, Duke Math. J. 28 (1961), 253-260. MR 0126253 (23:A3549)
  • [4] H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1937), 145-234. MR 1556968
  • [5] G. W. Henderson, The pseudo-arc as an inverse limit with one binding map, Duke Math. J. 31 (1964), 421-425. MR 0166766 (29:4039)
  • [6] R. F. Jolly and J. T. Rogers, Jr., Inverse limit spaces defined by only finitely many distinct bonding maps, Fund. Math. (to appear). MR 0264617 (41:9209)
  • [7] C. Kuratowski and S. Ulam, Sur un coefficient lié aux transformations continues d'ensembles, Fund. Math. 20 (1933), 244-253.
  • [8] W. S. Mahavier, A chainable continuum not homeomorphic to an inverse limit on [0, 1] with only one bonding map, Proc. Amer. Math. Soc. 18 (1967), 284-286. MR 0208580 (34:8389)
  • [9] S. Mardešić and J. Segal, $ \epsilon $-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164. MR 0158367 (28:1592)
  • [10] M. C. McCord, Universal $ \mathcal{P}$-like compacta, Michigan Math. J. 13 (1966) 71-85. MR 0188986 (32:6413)
  • [11] J. W. Rogers, Jr., Decomposable inverse limits with a single bonding map on [0, 1] below the identity, Fund. Math. (to appear). MR 0259866 (41:4495)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.55

Retrieve articles in all journals with MSC: 54.55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1969-0248758-1
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society