Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the size of the set of left invariant means on a semi-group


Author: Ching Chou
Journal: Proc. Amer. Math. Soc. 23 (1969), 199-205
MSC: Primary 46.20; Secondary 22.00
DOI: https://doi.org/10.1090/S0002-9939-1969-0247444-1
MathSciNet review: 0247444
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 0092128 (19:1067c)
  • [2] -, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. MR 0138100 (25:1547)
  • [3] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960. MR 0116199 (22:6994)
  • [4] E. Granirer, On amenable semigroups with a finite dimensional set of invariant means. I, II, Illinois J. Math. 7 (1963), 32-58. MR 0144197 (26:1744)
  • [5] -, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367-379. MR 0166597 (29:3870)
  • [6] I. S. Luthar, Uniqueness of the invariant mean on an abelian semigroup, Illinois J. Math. 3 (1959), 28-44. MR 0103414 (21:2184)
  • [7] C. Wilde and K. Witz, Invariant means and the Stone-Čech compactification, Pacific J. Math. 21 (1967), 577-586. MR 0212552 (35:3423)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.20, 22.00

Retrieve articles in all journals with MSC: 46.20, 22.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1969-0247444-1
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society