Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zeros of analytic functions with infinitely differentiable boundary values


Author: James G. Caughran
Journal: Proc. Amer. Math. Soc. 24 (1970), 700-704
MSC: Primary 30.67
DOI: https://doi.org/10.1090/S0002-9939-1970-0252649-8
MathSciNet review: 0252649
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition is proved that a set of points $ \{ {r_n}{e^{i\theta n}}\} $ in the unit disk be the set of zeros of an analytic function with infinitely differentiable boundary values for every choice of $ \{ {r_n}\} ,\;0 < {r_n} < 1\;{\text{and}}\;\sum {(1 - {r_n}) < \infty } $


References [Enhancements On Off] (What's this?)

  • [1] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1939), 1-13. MR 1, 226. MR 0001370 (1:226a)
  • [2] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345. MR 14, 261. MR 0050011 (14:261a)
  • [3] -, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190-196. MR 22 #3803. MR 0112958 (22:3803)
  • [4] J. G. Caughran, Two results concerning the zeros of functions with finite Dirichlet integral, Canad. J. Math. 21 (1969), 312-316. MR 0236396 (38:4692)
  • [5] W. P. Novinger, Holomorphic functions with infinitely differentiable boundary values, (to appear). MR 0269861 (42:4754)
  • [6] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, (to appear). MR 0273024 (42:7905)
  • [7] S. Warschawski, Über einen Satz von O. D. Kellogg, Gött. Nach. (1932), 73-86.
  • [8] J. H. Wells, On the zeros of functions with derivatives in $ {H^1}$ and $ {H^\infty }$, Canad. J. Math, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.67

Retrieve articles in all journals with MSC: 30.67


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0252649-8
Keywords: Bounded analytic function, zero set, boundary zeros, domain with smooth boundary, Carleson set, Blaschke product
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society