Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Automorphisms of countable primary abelian groups

Author: Paul Hill
Journal: Proc. Amer. Math. Soc. 25 (1970), 135-140
MSC: Primary 20.30
MathSciNet review: 0255674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the automorphism group $ A$ of a countable primary abelian group $ G$ is transitive on certain subsets of subgroups of $ G$. One such subset of subgroups in case $ G$ is without elements of infinite height is the collection of all basic subgroups of $ G$ with a fixed corank, finite or infinite.

References [Enhancements On Off] (What's this?)

  • [1] H. Freedman, The automorphisms of countable primary reduced Abelian groups, Proc. London Math. Soc. (3) 12 (1962), 77-99. MR 24 #A3215. MR 0133381 (24:A3215)
  • [2] L. Fuchs, Abelian groups, Internat. Series of Monographs on Pure and Appl. Math. Pergamon Press, New York, 1960, MR 22 #2644. MR 0111783 (22:2644)
  • [3] P. Hill, Enumeration of subgroups of small abelian groups, (to appear).
  • [4] I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954. MR 16, 444. MR 0065561 (16:444g)
  • [5] H. Leptin, Zur theorie der überabzählbaren abelschen $ p$-gruppen, Abh. Math. Sem. Univ. Hamburg 24 (1960), 79-90. MR 23 #A207. MR 0122875 (23:A207)
  • [6] C. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math. 11 (1967), 134-144. MR 34 #2691. MR 0202832 (34:2691)
  • [7] K. Shoda, Über die automorphismen einer endlichen abelschen gruppe, Math. Ann. 100 (1928), 674-686. MR 1512510
  • [8] D. Tarwater, Orbits of basic subgroups of primary abelian groups under automorphisms, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.30

Retrieve articles in all journals with MSC: 20.30

Additional Information

Keywords: Primary abelian group, basic subgroups, high subgroups, automorphism group, equivalent subgroups
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society