Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The structure and asymptotic behavior of polynomially compact operators


Author: Frank Gilfeather
Journal: Proc. Amer. Math. Soc. 25 (1970), 127-134
MSC: Primary 47.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0257791-3
MathSciNet review: 0257791
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A. R. Bernstein and A. Robinson proved that every polynomially compact operator in Hilbert space has nontrivial invariant subspaces. This paper gives a structure theorem for these operators. We show that a polynomially compact operator is the finite sum of translates of operators which have the property that a finite power of the operator is compact. Furthermore, the spectrum of polynomially compact operators is completely described. Conditions are given to determine the weak and strong asymptotic behavior of a polynomially compact contraction in Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] Tsuyoshi Andô, On hyponormal operators, Proc. Amer. Math. Soc. 14 (1963), 290-291. MR 26 #2884. MR 0145353 (26:2884)
  • [2] William B. Arveson and Jacob Feldman, A note on invariant subspaces, Michigan Math. J. 15 (1968), 61-64. MR 0223922 (36:6969)
  • [3] S. Berberian, Introduction to Hilbert space, University Texts in the Mathematical Sciences, Oxford Univ. Press, New York, 1961. MR 25 #1424. MR 0137976 (25:1424)
  • [4] F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566-570. MR 32 #8155a. MR 0190744 (32:8155a)
  • [5] Frank Gilfeather, Asymptotic convergence of operators in Hilbert space, Proc. Amer. Math. Soc. 22 (1969), 69-76. MR 0247508 (40:773)
  • [6] -, The structure of non-unitary operators and their asymptotic behavior, Thesis, University of California, Irvine, Calif., 1969.
  • [7] T. A. Gillespie, An invariant subspace theorem of J. Feldman, Pacific J. Math. 26 (1968), 67-72. MR 37 #6787. MR 0231232 (37:6787)
  • [8] P. R. Halmos, Invariant subspaces of polynomially compact operators, Pacific J. Math. 16 (1966), 433-437. MR 33 #1725. MR 0193505 (33:1725)
  • [9] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 #5826. MR 0188387 (32:5826)
  • [10] Joseph G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458. MR 26 #6772. MR 0149282 (26:6772)
  • [11] -, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. MR 30 #3375. MR 0173161 (30:3375)
  • [12] B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de le espace de Hilbert, Masson, Paris et Akadémiai Kiadó, Budapest, 1967. MR 37 #778. MR 0225183 (37:778)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47.40

Retrieve articles in all journals with MSC: 47.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0257791-3
Keywords: Polynomially compact operator, asymptotic behavior, structure theorem, determination of spectrum, invariant subspaces, hyponormal operator, normal operator
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society