Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Arens product and duality in $ B\sp{\ast} $-algebras


Authors: B. J. Tomiuk and Pak-ken Wong
Journal: Proc. Amer. Math. Soc. 25 (1970), 529-535
MSC: Primary 46.60
DOI: https://doi.org/10.1090/S0002-9939-1970-0259620-0
MathSciNet review: 0259620
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a $ {B^{\ast}}$-algebra, $ {A^{{\ast}{\ast}}}$ its second conjugate space and $ \pi $ the canonical embedding of $ A$ into $ {A^{{\ast}{\ast}}}$. $ {A^{{\ast}{\ast}}}$ is a $ {B^{\ast}}$-algebra under the Arens product. Our main result states that $ A$ is a dual algebra if and only if $ \pi (A)$ is a two-sided ideal of $ {A^{{\ast}{\ast}}}$. Gulick has shown that for a commutative $ A,\;\pi (A)$ is an ideal if and only if the carrier space of $ A$ is discrete. As this is equivalent to $ A$ being a dual algebra, Gulick's result thus carries over to the general $ {B^{\ast}}$-algebra.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659. MR 0045941 (13:659f)
  • [2] F. T. Birtel, On a commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13 (1962), 815-822. MR 31 #624. MR 0176349 (31:624)
  • [3] F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. (3) 4 (1954), 154-167. MR 15, 881. MR 0061768 (15:881g)
  • [4] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622. MR 0143056 (26:622)
  • [5] J. Dixmier, Les $ {C^{\ast}}$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [6] S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math. 18 (1966), 121-137. MR 33 #3118. MR 0194912 (33:3118)
  • [7] I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255. MR 13, 48. MR 0042066 (13:48a)
  • [8] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [9] T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach $ ^{\ast}$-algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1954), 15-36. MR 16, 1126. MR 0070068 (16:1126d)
  • [10] -, A characterization of dual $ {B^{\ast}}$-algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1954), 179-182. MR 16, 1126. MR 0070069 (16:1126e)
  • [11] C. E. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [12] J.-K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131-1149. MR 25 #1462. MR 0138014 (25:1462)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.60

Retrieve articles in all journals with MSC: 46.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0259620-0
Keywords: Dual $ {B^{\ast}}$-algebra, Arens product, $ {B^{\ast}}(\infty )$-sum, multiplier algebra, strict topology, carrier space, compact operators
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society