Some semigroups on a manifold with boundary

Author:
T. H. McH. Hanson

Journal:
Proc. Amer. Math. Soc. **25** (1970), 830-835

MSC:
Primary 54.80; Secondary 22.00

MathSciNet review:
0263055

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, is an abelian semigroup on an -dimensional simply connected manifold with boundary whose interior is a dense, simply connected, connected Lie group. We also assume there is a vector semigroup in such that the interior of misses the boundary of , and such that is a group. It is shown that if , then is iseomorphic to , and if , or , then is iseomorphic to .

**[1]**Robert Ellis,*A note on the continuity of the inverse*, Proc. Amer. Math. Soc.**8**(1957), 372–373. MR**0083681**, 10.1090/S0002-9939-1957-0083681-9**[2]**T. H. McH. Hanson,*Actions that fiber and vector semigroups*, Canad. J. Math.**24**(1972), 29–37. MR**0298637****[3]**-,*Concerning vector semigroups*, Dissertation, Univ. of Georgia, Athens, 1968.**[4]**G. Hochschild,*The structure of Lie groups*, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR**0207883****[5]**Karl Heinrich Hofmann and Paul S. Mostert,*Elements of compact semigroups*, Charles E. Merr ll Books, Inc., Columbus, Ohio, 1966. MR**0209387****[6]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[7]**Deane Montgomery and Leo Zippin,*Topological transformation groups*, Interscience Publishers, New York-London, 1955. MR**0073104****[8]**Paul S. Mostert,*Sections in principal fibre spaces*, Duke Math. J.**23**(1956), 57–71. MR**0075575****[9]**Paul S. Mostert and Allen L. Shields,*Semigroups with identity on a manifold*, Trans. Amer. Math. Soc.**91**(1959), 380–389. MR**0105463**, 10.1090/S0002-9947-1959-0105463-8**[10]**P. M. Rice,*A course in algebraic topology*, Notes, Univ. of Georgia, Athens, 1965-66.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54.80,
22.00

Retrieve articles in all journals with MSC: 54.80, 22.00

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1970-0263055-4

Keywords:
Simply connected manifold,
boundary,
vector semigroup,
vector group,
dimension,
fundamental group,
retract

Article copyright:
© Copyright 1970
American Mathematical Society