Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Free differentiable actions of $ S\sp{1}$ and $ S\sp{3}$ on homotopy spheres


Authors: Hsu-tung Ku and Mei-chin Ku
Journal: Proc. Amer. Math. Soc. 25 (1970), 864-869
MSC: Primary 57.47
DOI: https://doi.org/10.1090/S0002-9939-1970-0264697-2
MathSciNet review: 0264697
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that there are homotopy $ (4n + 1)$- or $ (4n + 3)$-spheres which admit infinitely many differentiable free actions of $ {S^1}$ or $ {S^3}$ with characteristic homotopy spheres in certain dimensions and without characteristic homotopy spheres in some other dimensions.


References [Enhancements On Off] (What's this?)

  • [1] R. Bott, Lectures on $ K(X)$, Harvard Univ., Cambridge, Mass., 1963.
  • [2] William Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 1–46. MR 0261629
  • [3] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0082174
  • [4] Wu-chung Hsiang, A note on free differentiable actions of 𝑆¹ and 𝑆³ on homotopy spheres, Ann. of Math. (2) 83 (1966), 266–272. MR 0192506, https://doi.org/10.2307/1970431
  • [5] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 0148075, https://doi.org/10.2307/1970128
  • [6] Hsu-Tung Ku and Mei-Chin Ku, Characteristic spheres of free differentiable actions of $ {S^1}$ and $ {S^3}$ on homotopy spheres, Univ. of Massachusetts, Amherst, Mass., 1969 (mimeographed).
  • [7] Deane Montgomery and C. T. Yang, Free differentiable actions on homotopy spheres, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 175–192. MR 0245042

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.47

Retrieve articles in all journals with MSC: 57.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0264697-2
Keywords: Characteristic homotopy sphere, Hirzebruch's $ L$-genus, normally cobordant, rational Pontrjagin classes
Article copyright: © Copyright 1970 American Mathematical Society