Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trace-class and centralizers of an $ H\sp{\ast} $-algebra


Author: Parfeny P. Saworotnow
Journal: Proc. Amer. Math. Soc. 26 (1970), 101-104
MSC: Primary 46.60
DOI: https://doi.org/10.1090/S0002-9939-1970-0267403-0
MathSciNet review: 0267403
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a proper $ {H^ \ast }$-algebra. Let $ \tau (A) = \{ xy\vert x,y \in A\} $, let $ R(A)$ be the set of all bounded linear operators $ S$ on $ A$ such that $ S(xy) = (Sx)y$ for all $ x,y \in A$ and let $ C(A)$ be the closed subspace of $ R(A)$ generated by the operators of the form $ La:x \to ax,a \in A$. It is shown that $ \tau (A)$ can be identified with the space of all bounded linear functionals on $ C(A)$ and that $ R(A)$ is the dual of $ \tau (A)$. Also it is proved that $ \tau (A)$ is a Banach algebra.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 7, 126. MR 0013235 (7:126c)
  • [2] C. N. Kellogg, Centralizers and $ {H^ \ast }$-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749. MR 0193529 (33:1749)
  • [3] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [4] P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary $ {H^ \ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 0267402 (42:2304)
  • [5] R. Schatten, The cross-space of linear transformations, Ann. of Math. (2) 47 (1946), 73-84. MR 7, 455. MR 0015674 (7:455a)
  • [6] -, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878. MR 0119112 (22:9878)
  • [7] R. Schatten and J. von Neumann, The cross-space of linear transformations. II, Ann. of Math. (2) 47 (1946), 608-630. MR 8, 31. MR 0016533 (8:31d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.60

Retrieve articles in all journals with MSC: 46.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0267403-0
Keywords: Trace-class, $ {H^ \ast }$-algebra, dual, centralizer, right centralizer, bounded linear functional
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society