Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subcartesian products of finitely many finite algebras


Author: Ahmad Shafaat
Journal: Proc. Amer. Math. Soc. 26 (1970), 401-404
MSC: Primary 08.30
DOI: https://doi.org/10.1090/S0002-9939-1970-0265261-1
MathSciNet review: 0265261
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if the lattice of subquasivarieties of a quasivariety of $ \Omega $-algebras has a finite maximal chain then every algebra of the quasivariety is a subcartesian product of a family of certain finitely many finite algebras.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Cohn, Universal algebra, Harper and Row, New York, 1965. MR 31 #224. MR 0175948 (31:224)
  • [2] J. A. Gerhard, The lattice of equational classes of idempotent semigroups (to appear). MR 0263953 (41:8552)
  • [3] G. Grätzer, On the class of subdirect powers of a finite algebra, Acta. Sci. Math. (Szeged) 25 (1964), 160-168. MR 29 #5772. MR 0168510 (29:5772)
  • [4] B. H. Neumann, Group properties of countable character (to appear). MR 0327912 (48:6254)
  • [5] Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin and New York, 1967. MR 35 #6734. MR 0215899 (35:6734)
  • [6] Ahmad Shafaat, On implicationally defined classes of algebras, J. London Math. Soc. 44 (1969), 137-140. MR 38 #5691. MR 0237409 (38:5691)
  • [7] -, On the structure of certain idempotent semigroups, Trans. Amer. Math. Soc. 149 (1970), 371-378. MR 0258995 (41:3640)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 08.30

Retrieve articles in all journals with MSC: 08.30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0265261-1
Keywords: Subcartesian product, quasivarieties of universal algebras, locally finite universal algebras, locally finite quasivarieties
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society