Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Imbedding free cyclic group actions in circle group actions


Author: Jeffrey L. Tollefson
Journal: Proc. Amer. Math. Soc. 26 (1970), 671-673
MSC: Primary 55.36; Secondary 57.00
DOI: https://doi.org/10.1090/S0002-9939-1970-0267580-1
MathSciNet review: 0267580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose a closed, orientable, irreducible $ 3$-manifold $ M$ admits a free cyclic group action of prime order. We consider the problem of determining when $ M$ admits an effective action of the circle group $ SO(2)$ in which the cyclic action is imbedded. The main result is that if the $ {Z_k}$ action is ``$ Z$-classified", then it is weakly equivalent to a $ {Z_k}$ action imbedded in an effective action of $ SO(2)$ if and only if some homeomorphism generating the first $ {Z_k}$ action is homotopic to the identity homeomorphism on $ M$.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Brown, Unknotting in $ {M^2} \times I$, Trans. Amer. Math. Soc. 123 (1966), 480-505. MR 33 #6640. MR 0198482 (33:6640)
  • [2] P. Orlik, Examples of free involutions on $ 3$-manifolds, Proc. Conference Transformation Groups, Springer-Verlag, Berlin, 1968, pp. 205-206. MR 0261630 (41:6243)
  • [3] P. Orlik and R. Raymond, Actions of $ SO(2)$ on $ 3$-manifolds, Proc. Conference Transformation Groups, Springer-Verlag, Berlin, 1968, pp. 297-318. MR 0261630 (41:6243)
  • [4] J. Stallings, On fibering certain $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics (Proc. Univ. of Georgia Inst. 1961) Prentice-Hall, Engelwood Cliffs, N.J., 1962, pp. 95-100. MR 28 #1600. MR 0158375 (28:1600)
  • [5] J. L. Tollefson, Fibering $ 3$-manifolds that admit free $ {Z_k}$ actions, Trans. Amer. Math. Soc. 147 (1970), 279-287. MR 0253342 (40:6557)
  • [6] -, A characterization of $ 3$-manifolds that are products, Amer. J. Math. 90 (1970).
  • [7] F. Waldhausen, Gruppen mit Zentrum und $ 3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223. MR 0236930 (38:5223)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55.36, 57.00

Retrieve articles in all journals with MSC: 55.36, 57.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0267580-1
Keywords: Finite cyclic group actions, $ 3$-manifolds, circle group actions
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society