Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inertial and bordism properties of spheres


Author: Allan Brender
Journal: Proc. Amer. Math. Soc. 27 (1971), 209-212
MSC: Primary 57.10
DOI: https://doi.org/10.1090/S0002-9939-1971-0267592-9
MathSciNet review: 0267592
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ k$-connective bounding group $ {\theta ^n}(k)$ and the $ k$-connective inertial group $ {I^n}(k)$ are defined as subgroups of $ {\theta ^n}$, the group of smooth $ n$-spheres, $ n \geqq 7$. It is shown $ {I^n}(k)$ is contained in $ {\theta ^n}(k)$. Consequently, the image of the Milnor-Novikov pairing $ {\tau _{n,k}}$ is contained in $ {\theta ^{n + k}}(k)$ when $ n \geqq k + 2$. It follows that $ {\tau _{7,3}} = 0$.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271-298. MR 36 #2160. MR 0219077 (36:2160)
  • [2] E. H. Brown, Jr. and B. Steer, A note on Stiefel manifolds, Amer. J. Math. 87 (1965), 215-217. MR 30 #5322. MR 0175137 (30:5322)
  • [3] G. Brumfiel, On the homotopy groups of BPL and PL/O. II, Topology 8 (1969), 305-311. MR 0248830 (40:2080)
  • [4] R. De Sapio, Differential structures on a product of spheres. II, Ann. of Math. (2) 89 (1969), 305-313. MR 39 #7611. MR 0246307 (39:7611)
  • [5] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584. MR 0148075 (26:5584)
  • [6] A. Kosinski, On the inertia group of $ \pi $-manifolds, Amer. J. Math. 89 (1967), 227-248. MR 35 #4936. MR 0214085 (35:4936)
  • [7] R. Lashof (Editor), Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565-591. MR 32 #443. MR 0182961 (32:443)
  • [8] J. W. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #5208. MR 0180978 (31:5208)
  • [9] J. Munkres, Concordance inertia groups, Advances in Math. 4 (1970), 224-235. MR 0263085 (41:7690)
  • [10] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J., 1968. MR 0248858 (40:2108)
  • [11] I. Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad. Sci. Paris 255 (1962), 3104-3106. MR 26 #781. MR 0143221 (26:781)
  • [12] -, $ 8$-manifolds admitting no differentiable structure, J. Math. Soc. Japan 13 (1961), 377-382. MR 26 #780. MR 0143220 (26:780)
  • [13] C. T. C. Wall, Classification problems in differential topology. VI. Classification of $ (s - 1)$-connected $ (2s + 1)$-manifolds, Topology 6 (1967), 273-296. MR 35 #7343. MR 0216510 (35:7343)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.10

Retrieve articles in all journals with MSC: 57.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0267592-9
Keywords: $ k$-connective cobordism, inertia group, exotic spheres
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society