Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quotients in Noetherian lattice modules


Author: J. A. Johnson
Journal: Proc. Amer. Math. Soc. 28 (1971), 71-74
MSC: Primary 06.85; Secondary 13.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0277460-4
MathSciNet review: 0277460
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a generalization of the fact that if $ M$ is a maximal (proper) ideal of a Noetherian ring $ R$, then the ring $ M/MA$ is a vector space over $ R/M$ for all ideals $ A$ of the ring $ R$.


References [Enhancements On Off] (What's this?)

  • [1] K. P. Bogart, Nonimbeddable Noether lattices, Proc. Amer. Math. Soc. 22 (1969), 129-133. MR 39 #2667. MR 0241327 (39:2667)
  • [2] N. Jacobson, Lectures in abstract algebra. Vol. I. Basic concepts, Van Nostrand, Princeton, N. J., 1951. MR 12, 794. MR 0041102 (12:794c)
  • [3] E. W. Johnson, $ A$-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125-139. MR 38 #5675. MR 0237387 (38:5675)
  • [4] J. A. Johnson, $ A$-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970), 347-373. MR 0263797 (41:8397)
  • [5] J. A. Johnson and E. W. Johnson, Lattice modules over semi-local Noether lattices, Fund. Math. 68 1970), 187-201. MR 0269641 (42:4536)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.85, 13.00

Retrieve articles in all journals with MSC: 06.85, 13.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0277460-4
Keywords: Lattice, modular, multiplicative, complemented, lattice module, Noetherian
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society