Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Families of mutually complementary topologies


Author: B. A. Anderson
Journal: Proc. Amer. Math. Soc. 29 (1971), 362-368
MSC: Primary 54.20
DOI: https://doi.org/10.1090/S0002-9939-1971-0281141-0
MathSciNet review: 0281141
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several lattices of topologies on an infinite set are considered and bounds are given for the sup of the set of cardinals d such that there is a family of d mutually complementary topologies. Large classes of $ {\aleph _0}$-topologies are shown to have $ {\aleph _0}$-complements, and an example is given to prove that complementation is not, in general, a very selective topological operation.


References [Enhancements On Off] (What's this?)

  • [1] B. A. Anderson and D. G. Stewart, $ {T_1}$-complements of $ {T_1}$ topologies, Proc. Amer. Math. Soc. 23 (1969), 77-81. MR 39 #6240. MR 0244927 (39:6240)
  • [2] B. A. Anderson, A class of topologies with $ {T_1}$-complements, Fund. Math. 69 (1970), 267-277. MR 0281140 (43:6859)
  • [3] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [4] S. P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51-56. MR 36 #5882. MR 0222832 (36:5882)
  • [5] S. P. Franklin and S. W. Williams, Nonregular separable spaces, Amer. Math. Monthly 75 (1968), 208. MR 1534745
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [7] R. E. Larson, A sublattice of the lattice of topologies, Notices Amer. Math. Soc. 17 (1970), 223. Abstract #672-489.
  • [8] P. S. Schnare, Infinite complementation in the lattice of topologies, Fund. Math. 64 (1969), 249-255. MR 39 #3444. MR 0242110 (39:3444)
  • [9] A. K. Steiner, The lattice of topologies: structure and complementation, Trans. Amer. Math. Soc. 122 (1966), 379-398. MR 32 #8303. MR 0190893 (32:8303)
  • [10] -, Complementation in the lattice of $ {T_1}$-topologies, Proc. Amer. Math. Soc. 17 (1966), 884-886. MR 33 #1255. MR 0193033 (33:1255)
  • [11] A. K. Steiner and E. F. Steiner, Topologies with $ {T_1}$-complements, Fund. Math. 61 (1967), 23-28. MR 37 #5840. MR 0230277 (37:5840)
  • [12] A. C. M. van Rooij, The lattice of all topologies is complemented, Canad. J. Math. 20 (1968), 805-807. MR 37 #3504. MR 0227920 (37:3504)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.20

Retrieve articles in all journals with MSC: 54.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0281141-0
Keywords: Topologies, principal topologies, $ {T_1}$ topologies, $ {\aleph _0}$-topologies, lattice complementation
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society