Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The functional equation of some Dirichlet series

Author: Bruce C. Berndt
Journal: Proc. Amer. Math. Soc. 29 (1971), 457-460
MSC: Primary 10.41
MathSciNet review: 0276181
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The functional equation for two classes of Dirichlet series is established. These Dirichlet series involve primitive characters and can be regarded as generalizations of Dirichlet's L-functions or of Epstein's zeta-functions. One class is also a generalization of some series studied by Stark.

References [Enhancements On Off] (What's this?)

  • [1] Tom M. Apostol, Dirichlet 𝐿-functions and character power sums, J. Number Theory 2 (1970), 223–234. MR 0258766
  • [2] Harold Davenport, Multiplicative number theory, Lectures given at the University of Michigan, Winter Term, vol. 1966, Markham Publishing Co., Chicago, Ill., 1967. MR 0217022
  • [3] Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), no. 2, 205–216 (German). MR 1511399, 10.1007/BF01449900
  • [4] Adolf Hurwitz, Einige Eigenschaften der Dirichlet'schen Funktionen $ F(s) = \sum {(D/n) \cdot 1/{n^s}} $, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten, Z. Math. Phys. 27 (1882), 86-101.
  • [5] H. M. Stark, 𝐿-functions and character sums for quadratic forms. I, Acta Arith. 14 (1967/1968), 35–50. MR 0227122

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10.41

Retrieve articles in all journals with MSC: 10.41

Additional Information

Keywords: Epstein zeta-function, Dirichlet L-function, primitive character, functional equation, quadratic form
Article copyright: © Copyright 1971 American Mathematical Society