Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Modular congruences and the Brown-McCoy radical for semigroups


Author: D. R. LaTorre
Journal: Proc. Amer. Math. Soc. 29 (1971), 427-433
MSC: Primary 20.93
DOI: https://doi.org/10.1090/S0002-9939-1971-0280631-4
MathSciNet review: 0280631
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Brown-McCoy radical $ {R_{{G^0}}}$ for semigroups with zero is characterized in terms of modular two-sided congruences. The general notion of the $ \mathcal{C}$-radical of a semigroup is used to prove that $ {R_{{G^0}}}$ is the $ {\rho _s}$-class containing zero, where $ {\rho _s}$ is the intersection of all modular maximal two-sided congruences of S. Thus when $ {\rho _s}$ is the identity relation, $ {R_{{G^0}}} = 0$ and S is isomorphic to a subdirect product of congruence-free semigroups with zero and identity. We also link $ {R_{{G^0}}}$ to representation theory.


References [Enhancements On Off] (What's this?)

  • [1] B. D. Arendt, Semisimple bands, Trans. Amer. Math. Soc. 143 (1969), 133-143. MR 40 #255. MR 0246986 (40:255)
  • [2] B. Brown and N. H. McCoy, Radicals and subdirect sums, Amer. J. Math. 69 (1947), 46-58. MR 8, 433. MR 0019594 (8:433d)
  • [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. II, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1967. MR 36 #1558. MR 0218472 (36:1558)
  • [4] H. J. Hoehnke, Das Brown-McCoysche 0-Radikal für Algebren und seine Anwendung in der Theorie der Halbgruppen, Fund. Math. 66 (1969/70), 155-175. MR 40 #7178. MR 0253965 (40:7178)
  • [5] -, Zur Strukturtheorie der Halbgruppen, Math. Nachr. 26 (1963), 1-13. MR 28 #4051. MR 0160841 (28:4051)
  • [6] -, Structure of semigroups, Canad. J. Math. 18 (1966), 449-491. MR 33 #5762. MR 0197597 (33:5762)
  • [7] D. R. LaTorre, The Brown-McCoy radicals of a hemiring, Publ. Math. Debrecen 14 (1967), 15-28. MR 36 #3828. MR 0220776 (36:3828)
  • [8] -, An internal characterization of the 0-radical of a semigroup, Math. Nachr. 45 (1970), 279-281. MR 0269764 (42:4659)
  • [9] R. H. Oehmke, On maximal congruences and finite semisimple semigroups, Trans. Amer. Math. Soc. 125 (1966), 223-237. MR 34 #2739. MR 0202880 (34:2739)
  • [10] H. Seidel, Über das Radikal einer Halbgruppe, Math. Nachr. 29 (1965), 255-263. MR 32 #1276. MR 0183800 (32:1276)
  • [11] R. E. Slover, Representations of a semigroup, Trans. Amer. Math. Soc. 120 (1965), 417-27. MR 32 #5765. MR 0188326 (32:5765)
  • [12] A. Sulin'skil, Some questions in the general theory of radicals, Mat. Sb. 44 (86) (1958), 273-286. MR 20 #4581. (Russian) MR 0098119 (20:4581)
  • [13] -, The Brown-McCoy radical in categories, Fund. Math. 59 (1966), 23-41. MR 34 #1378. MR 0201496 (34:1378)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.93

Retrieve articles in all journals with MSC: 20.93


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0280631-4
Keywords: Brown-McCoy radical, congruence-free semigroups, modular congruences, radical theory for semigroups
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society