Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Fourier-algebra of a locally compact amenable group


Author: Volker Flory
Journal: Proc. Amer. Math. Soc. 29 (1971), 603-606
MSC: Primary 22.65; Secondary 42.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0283138-3
MathSciNet review: 0283138
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a locally compact amenable group. The elements of the Fourier-algebra A(G) are characterized with the aid of the theorem of Schoenberg-Eberlein-Eymard.


References [Enhancements On Off] (What's this?)

  • [1] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208. MR 0228628 (37:4208)
  • [2] R. Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361-363. MR 36 #5619. MR 0222569 (36:5619)
  • [3] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, Princeton, N.J., 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [4] H. Leptin, On locally compact groups with invariant means, Proc. Amer. Math. Soc. 19 (1968), 489-494. MR 39 #361. MR 0239001 (39:361)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22.65, 42.00

Retrieve articles in all journals with MSC: 22.65, 42.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0283138-3
Keywords: Theorem of Schoenberg-Eberlein-Eymard, Fourier-algebra, amenable group, convolution, representation, $ {C^\ast}$-group algebra
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society