Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sheltered modules and rings


Author: Seth Warner
Journal: Proc. Amer. Math. Soc. 30 (1971), 8-14
MSC: Primary 16.98
DOI: https://doi.org/10.1090/S0002-9939-1971-0281760-1
MathSciNet review: 0281760
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of determining when a module (ring) admits an indiscrete, Hausdorff linear (ideal) topology is discussed in terms of sheltered modules (rings).


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Algèbre. Chap. 8, Actualités Sci. Indust., no. 1261, Hermann, Paris, 1958. MR 20 #4576. MR 0098114 (20:4576)
  • [2] -, Algèbre commutative. Chaps. 3, 4, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
  • [3] M. Hochster, Rings with nondiscrete ideal topologies, Proc. Amer. Math. Soc. 21 (1969), 357-362. MR 39 #195. MR 0238831 (39:195)
  • [4] Horst Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 241-267. MR 16, 1085. MR 0069811 (16:1085a)
  • [5] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. I, Van Nostrand, Princeton, N. J., 1958. MR 19, 833. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.98

Retrieve articles in all journals with MSC: 16.98


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0281760-1
Keywords: Sheltered module, sheltered submodule, sheltered ring, sheltered ideal, topological module, topological ring
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society