Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Hardy class of a Bazilevič function and its derivative


Author: Sanford S. Miller
Journal: Proc. Amer. Math. Soc. 30 (1971), 125-132
MSC: Primary 30.42
DOI: https://doi.org/10.1090/S0002-9939-1971-0288246-9
MathSciNet review: 0288246
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Bazilevič function $ f(z)$ defined in $ \Delta :\vert z\vert < 1$ by $ f(z) \equiv {[\alpha \smallint _0^zP(\zeta )g{(\zeta )^\alpha }{\zeta ^{ - 1}}d\zeta ]^{1/\alpha }}$ where $ g(\zeta )$ is starlike in $ \Delta $, $ P(\zeta )$ is regular with Re $ P(\zeta ) > 0$ in $ \Delta $ and $ \alpha > 0$ is univalent. The class of such functions contains many of the special classes of univalent functions. The author determines the Hardy classes to which $ f(z)$ and $ f'(z)$ belong. In addition if $ f(z) = \sum\nolimits_0^\infty {{a_n}{z^n}} $ the limiting value of $ \vert{a_n}\vert/n$ is obtained.


References [Enhancements On Off] (What's this?)

  • [1] I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. 37 (79) (1955), 471-476. (Russian) MR 17, 356. MR 0072949 (17:356e)
  • [2] P. J. Eenigenburg and F. R. Keogh, On the Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335-346. MR 0306505 (46:5631)
  • [3] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439. MR 1545260
  • [4] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, Cambridge, 1958. MR 21 #7302. MR 0108586 (21:7302)
  • [5] J. E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, Oxford, 1944. MR 6, 261. MR 0012121 (6:261f)
  • [6] A. J. Lohwater, G. Piranian and W. Rudin, The derivative of a schlicht function, Math. Scand. 3 (1955), 103-106. MR 17, 249. MR 0072218 (17:249b)
  • [7] C. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159-173. MR 31 #4900. MR 0180669 (31:4900)
  • [8] D. K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc. 132 (1968), 353-361. MR 36 #5330. MR 0222278 (36:5330)
  • [9] J. Zamorski, On Bazilevič schlicht functions, Ann. Polon. Math. 12 (1962), 83-90. MR 26 #1446. MR 0143896 (26:1446)
  • [10] A. Zygmund, Trigonometrical series. Vol. 1, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0076084 (17:844d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.42

Retrieve articles in all journals with MSC: 30.42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0288246-9
Keywords: Univalent, Bazilevič functions, close-to-convex, Hardy class, coefficient growth condition, Cesaro summability
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society