Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Polynomial extremal problems in $ L\sp{p}$

Author: E. Beller
Journal: Proc. Amer. Math. Soc. 30 (1971), 249-259
MSC: Primary 30.10
MathSciNet review: 0281884
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ p > 2$, let $ {m_{p,n}}$ be the minimum of the $ {L^p}$ norm all nth degree polynomials $ {\sum ^n} {a_k} {e^{ikt}}$ which satisfy $ \vert{a_k}\vert = 1, k = 0, 1, \cdots, n$. We exhibit certain polynomials $ {P_n}$ whose $ {L^p}$ norm $ ( 2 < p < \infty)$ is asymptotic to $ \surd{n}$, thereby proving that $ {m_{p,n}}$ is itself asymptotic to $ \surd{n}$. We also show that the sup norm of (essentially) the same polynomials is asymptotic to $ (1.1716 \ldots) \times \surd{n}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.10

Retrieve articles in all journals with MSC: 30.10

Additional Information

PII: S 0002-9939(1971)0281884-9
Keywords: Close to constant polynomials, coefficients of constant modulus, extremal polynomials, $ {L^p}$ norms of polynomials, sup norm of polynomials, Fresnel integral, van der Corput's lemma
Article copyright: © Copyright 1971 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia